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Abstract 

We consider the fair division of a set of indivisible items where each agent 

can get more than one good and monetary transfers are allowed. For the 

problems with three or more goods, population monotonicity is incompatible 

with efficiency except for very specific Cartesian product preference domains. 

For the 2-goods case, Shapley solution and the constrained egalitarian solution 

is PM on the subadditive preference domain. We also define hybrid solutions 

that are PM on the full domain. Among them, the hybrid Shapley solution is 

PM.  
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1 Introduction 

We consider the fair division problem where individuals have equal claims on a set of 

indivisible items, and each agent can get more than one good. We also allow for balanced 

monetary transfers among agents.  

Many authors have studied population monotonicity for the fair division problem (Moulin 

(1990, 1992), Beviá (1996a,b), Tadenuma and Thomson (1993)). It is mostly interpreted as a 

solidarity principle. Among the two well-known versions, upon the arrival of an additional 

agent, the stronger notion (PM) asks no one to be better-off, while the weaker one (wPM) 

requires everyone to be affected in the same direction; either everyone loose or everyone gains. 

The essence of the solidarity idea, indeed, lies in the weaker version. In case there is no 

production, no monetary transfers among the agents, and agents have monotone preferences, 
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when an extra claimant appears in the allocation process of a fixed supply of consumption 

goods, unambiguously, he creates a burden on the existing agents. There, both PM and wPM 

asks no existing agents to be better-off. However, if utility is transferable, an extra claimant 

who receives more utility from some bundle that is not very desirable for the existing agents 

would possibly be beneficial to the society. Therefore, in our setting wPM is more suitable as a 

solidarity principle. 

In a very general setting where there is no restriction on the individual preferences, Beviá 

(1996a) showed that PM is incompatible with efficiency for problems with more than 4 goods. 

Moreover, PM is incompatible with one of the most important fairness criterion; envy-freeness 

(Alkan 1994, Moulin 1990). Then, the question is: “Why should we care about population 

monotonic solutions?” 

Consider fair division of a single object among three agents, and the equal division solution 

which is obviously wPM. Let the valuations of individuals be 2, 4 and 9, respectively. Each 

agent receives 3 units of utility. However, if agent 3 does not appear, agent 2 receives the 

object and a monetary transfer of -2. A redistribution of his allocation among agents 2 and 3 

yields 7 units of utilities, which leaves room for both to be better-off. Here, agents 2, and 3 

would manipulate the outcome by leaving 3 outside the allocation process. 

Doğan (2013) defines the cooperative manipulation concept above, and the corresponding 

stability concept absence-proofness
2
. He also showed that population monotonic solutions are 

stable in that sense.  

Here, we put forward the stability aspect of population monotonicty besides the solidarity 

aspect, and try to make an extensive analysis of population monotonicity in this setting. 

Aside from the negative result, Beviá (1996a) also showed that when the domain of 

preference profiles satisfies “substitutability”, the induced transferable utility (TU) game is 

concave and hence the Shapley solution (Shapley 1962) is PM (Sprumont (1990)). However, 

substitutability is not defined on the Cartesian product of individual preference domains. 

Assuming free disposability (monotone preferences), we try to stretch Beviá’s both the positive 

and the negative results for different number of goods under different Cartesian product 

domains where individual preferences are submodular, subadditive, and superadditive. 

In Section 2, we give the general setting.  In Section 3, we define some well-known 

individual preference domains and basic fairness and stability properties: symmetry, continuity, 

equal split guarantee; population monotonicity and absence-proofness. In Section 4, we define 

two well-known symmetric and continuous solutions, the Shapley solution and the constrained 

egalitarian (Dutta and Ray (1989)), which are also PM in concave games. In Section 5, we 

analyze problems with three or more goods. Here, PM and efficiency are incompatible on the 

superadditive domain. Also, neither submodular nor subadditive preferences induce concave 

TU games. Moreover, the Shapley solution is not PM on any of these domains.  

In Section 6, we first show that when each agent has subadditive preferences the Shapley 

solution and the egalitarian solution are PM. On the full domain of monotone preferences we 

can write the efficient surplus as the summation of surplus derived from two problems where 

                                                           
2
 See Section 3 for a formal definition. 



3 
 

each problem induces concave TU games: a 2-goods problem with subadditive preferences and 

a single good problem. We define hybrid solutions as the summation of two solutions to those 

problems. However, dynamics of a change in population is not trivial in our construction. A 

hybrid solution is PM if both solutions are PM and solution to the single good problem satisfies 

additive scale monotonicity
3
. The hybrid Shapley solution is PM on the full domain while the 

hybrid egalitarian solution is not. Finally, we show that the equal split guarantee is not 

compatible with PM for problems with two or more goods. 

2 The setting 

A finite set of commonly owned indivisible goods denoted by   is distributed to a set of 

individuals denoted by      where   is the set of all finite potential societies and | |   . 

We consider a general model where agents can get multiple goods. Monetary transfers are 

available, and agents’ preferences are quasilinear in money. Given (   ), each agent     

receives   ( ) units of utility from the bundle    , while also receiving      units of 

money yields   (   )    ( )   . We also assume free disposability (monotone 

preferences), i.e.,   ( )    ( ) for all    . By convention   ( )   . A list of preferences 

{  }    is denoted by  , and    denotes the restricted list to    . A fair division problem is a 

triple (     ),   denotes the set of all problems (with monotone preferences), and    denotes 

all problems with   goods. 

 Given a problem with monetary transfers, an allocation consists of two components: 

Assignment of the objects to the agents and balanced monetary transfers among the agents. An 

assignment is a mapping        such that         for all      , and ⋃        , 

while some agents may receive no good with     . A vector of balanced monetary transfers 

is      s.t. ∑        . 

An assignment   is efficient if ∑   (  )    ∑   (  
 )    for all assignments        . 

By quasilinearity, an allocation (   ) is efficient if and only if   is efficient. Here, we are only 

interested in individually rational (IR) allocations, i.e.,   (  )       for all    . A 

solution   is a mapping such that in a given domain of problems, it assigns a set of allocations 

to each problem.   is efficient (or IR) if it always yields efficient (or IR) allocations, and is 

single valued if for any (     ), for any (   ) (     )   (     ) we have   (  )     

  (  
 )    

  for all    . Then,   (     ) denotes the final utility of agent   at solution  . 

Throughout this paper, for simplicity, we will write down some properties and results for single 

valued solutions only. However, this simplification does not alter any result stated here. 

Each problem (     )  induces a TU cooperative game         with  ( )  

∑   (  )    where   is an efficient assignment at the problem (      ) . We also write 

 (   )  ∑   (  )    if   is an efficient assignment at the problem (      ) with    . By 

convention  ( )   . A game   is concave if  (  {   })   (  { })   (  { })   ( ) 

for all    , and        . 
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3 Preferences and basic properties 

Throughout this paper we will consider the following basic types of preferences: 

Definition 1: A utility function     
     

(i) is submodular if for all      ,   (   )    (   )    ( )    ( ). 

(ii) has decreasing marginal returns if for all      ,    , 

  ( )    (  { })    ( )    (  { }). 

(iii) is subadditive if for all      ,   (   )    ( )    ( ). 

(iv) is additively separable if for all    ,   ( )  ∑   ( )   . 

(v) is superadditive if for all      ,   ( )    ( )    (   ). 

Properties (ii) and (iii) are equivalent, and reflect the concavity of    (see e.g. Gul and 

Stacchetti (1999)). Subadditive preference domain contains the submodular preferences. Both 

subadditive and superadditive preference domain contains the additively separable preferences. 

In case of a single object, all properties trivially hold. Also, for | |   , subadditivity and 

submodularity coincides. 

Definition 2: A solution   is  

(i) population monotonic (PM) on      if for all (      ) (      )     with   

  , and for all    , we have   (  )       (  
 )    

  for all (     )  

 (      ) and (   )   (      ).  

(ii) weakly population monotonic (wPM) on      if for all (      ) (      )     

with     , and for all (     )   (      )  and (   )   (      )  we have 

either   (  )       (  
 )    

  for all     or   (  )       (  
 )    

  for all 

   . 

Doğan (2013) defines the following cooperative manipulation argument and the 

corresponding stability concept absence-proofness.  

Manipulation by absence. Given a problem (     ) and a solution  , a group of agents 

    renounce their claims. The solution proposes a set of allocations at the reduced problem 

(          ) . Let       meet with agents in   after the allocation process in the 

reduced problem and reallocate the sum of goods and money they received at one of the 

allocations proposed by   among    . By doing so, if their total utility is greater compared 

to the total utility at some allocation proposed by   at the original problem,   is said to be 

manipulable by     via absence of  . 

Absence-proofness. A solution   is absence-proof if it is not manipulable at any problem by 

any group of agents. 

Proposition 1: (Doğan 2013) If a solution   is population monotonic, then it is also absence-

proof. 
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Doğan (2013) also shows that wPM is not a sufficient condition for absence-proofness. In 

this work we put forward the stability aspect of population monotonicity besides the solidarity 

aspect, and therefore use PM as our main principle. Where we have positive results, along with 

the PM we also look for solutions with basic fairness criteria. The most basic one is that a 

solution does not discriminate agents by their names and cares for only their preferences. We 

also do not want any significant jumps in the final utilities when there is a miniscule change in 

the utility profile. 

Symmetry. A single valued solution   satisfies symmetry if for any two problems (     ) and 

(      ) s.t.      
 ,      

  for some      , and      
  for all     {   } we have; 

  (     )    (      ) ,   (     )    (      ) , and   (     )    (      )  for 

all     {   }. 

Continuity. A single valued solution   is continuous if for any fixed (   ),    is a continuous 

function of  . 

Another important fairness idea is that no agent is worse off compared to receiving (  ⁄ )
th
 

of the goods. For the indivisible goods, (  ⁄ )
th
 is not well defined. Beviá (1996c) discusses this 

issue and uses identical preference lower bound (IPLB) to apply the idea. In our case, for each 

agent this lower bound corresponds to (   ⁄ )
th
 of the efficient surplus generated at the 

hypothetical problem where everybody else has the same preferences. Here, we ask for a less 

demanding lower bound. 

Equal Split Guarantee (ESG). A single valued solution   satisfies ESG if for all    ,  

  (     )    ( )  .  

In the worst case scenario, an agent receives all the goods and then compensates others so 

that everybody gets the same final utility. In case | |   , where PM and ESG are compatible, 

ESG and IPLB coincides. When | |   , PM is not even compatible with the weaker property, 

ESG (see Section 7). 

4 Concave TU games and solutions 

In allocation problems where utility is transferable, an important source in the design of 

solutions is the set of algorithms that calculate the efficient surplus (or cost). However, 

excluding the special case where utilities are additively separable
4
, finding the efficient surplus 

is not an easy task. Indeed, it is an NP hard problem for submodular preference domain (Feige 

(2009)). If symmetry and continuity is desired as a minimal fairness principle, a remedy is to 

borrow solutions from TU game literature such as the Shapley solution and the egalitarian 

solution (Dutta Ray (1989)). 

Concave games are of special importance for two reasons. First, both solutions are 

population monotonic on concave games. Moreover, the egalitarian solution yields the unique 

vector that Lorenz dominates every other vector within the dual core of the game.  
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The Shapley solution (Sh). Given a problem (     ), (   )    (     ) if and only if for 

all    ,   (  )        ( ) where    is the induced TU game.
5
 

Before we define the egalitarian solution, we need to define the dual core, which is closely 

related to population monotonicity. 

Stand-alone Core (SAC). An allocation (   ) is in the SAC if ∑   (  )         ( ) for 

all    . A single valued solution   is in the SAC on      if for all (     )    , and for 

all    , ∑   (     )     ( ). 

Note that population monotonic solutions are always in the SAC as otherwise for some  , at 

least one agent from   is strictly worse-off when     leaves. 

Dutta and Ray (1989) defined the Lorenz core and related egalitarian solution in the TU 

game context. They also defined an algorithm to calculate the solution for convex TU games. 

The dual algorithm for concave games, defined by Klijn et. al (2001), is as follows: Fix a 

concave TU game (   ) and for any    ,  (   )   ( ) | |⁄ , so that  (   ) is the average 

worth of   under  . Define     . 

Step 1: Define by    the unique coalition such that (i)  (      )   (     ) for all    ; 

(ii) |  |  | | for all      such that  (      )   (     ); so that    is the largest coalition 

with the lowest average worth (under concavity    exists). Define 

    ( )   (      ) for all     . (1) 

Step k: Suppose that         have been defined recursively and ⋃   
   
     . Define a new 

game with the set of agents      ⋃   
   
   . For all     , define   ( )      (  

    )      (    ). This new game (     ) is concave. Let    be the largest coalition with 

the lowest average worth and define 

    ( )   (      ) for all     . (2) 

Now we define a sufficient condition for PM on the domain of preference profiles. 

Substitutability. Given a problem (     ), and    ,  (   ) satisfies substitutability if for all 

      and    ,  (    { })   (   )   (    { })   (   ). 

Proposition 2: (Beviá 1996a). If         is such that for each (     ) ,    ,  (   ) 

satisfies substitutability, the induced game  ( ) is concave for all (     )       . 

Corollary 1: The Shapley solution and the egalitarian solution are PM on      . 

Both solutions are symmetric, and the Shapley value is continuous in   by definition. 

Egalitarian solution is also continuous in   (see e.g. Hougaard et al (2005)). As   is continuous 

in  , both solutions satisfy continuity. 
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5 Problems with | |    

Here, we want to emphasize two main points. First one is that the incompatibility between 

the population monotonicity and efficiency is more serious than it was proven in Beviá (1996a). 

Secondly, we feel that the positive result (Proposition 2) needs some clarification in terms of 

the Cartesian product domain of profiles for which the result holds. 

The incompatibility result in Beviá (1996a) is based on an example with 4 goods where 

individuals are allowed to have non-monotonic preferences (no free disposal). However, if we 

allow non-monotonic preferences, incompatibility prevails even in a 2-person, 2-good problem. 

Consider the following problem;   

Example 1:   ( )    ( )   ,   ( )    ( )       (  )    (  )     

Note that   ( )    ( )    for any efficient solution. Hence, for at least one   we have 

  ( )   . However, each agent gets 2 units of utility at the efficient solution when they are 

the only claimants. Thus, achieving PM is not possible here. 

We strengthen this negative result in two dimensions. Incompatibility between PM and 

efficiency prevails for 3-goods problem even in economies with monotone preferences. Let 

     represent the set of problems where each agent has superadditive preferences.  

Proposition 3: No efficient solution is population monotonic on      
   

 for    . 

Proof: Let | |   , and consider the following preferences: 

                     

  ( ) 0 0 0 2 0 0 2 

  ( ) 0 0 2 0 2 2 2 

  ( ) 0 0 0 0 2 0 2 

  ( ) 0 2 0 2 0 2 2 

Consider the problem (     )  with   {     } . At the unique efficient assignment 

     ,      and  ( )   (  )   . Also,  (  )   (  )   . Let   be efficient, 

population monotonic and (   )   (     ) . By PM, (   )  is in the SAC. Then, 

  (     )    (     )   ,   (     )    (     )   . Hence, we have   (     )  

  (     )   , and   (     )   . Then,   ({   })    again by PM. Now, consider the 

problem (      )  with    {     } . By a similar argument we have   ({   })   . 

Therefore, we have the desired contradiction. For | |   , use the same profile and add 

dummy goods such that it brings 0 extra utility to all bundles for all agents.       

Cartesian product of two special types of submodular preferences constitutes substitutable 

domains. First one is   ( )          ( ) for all agents. Then, our problem is equivalent to 

the allocation problem where each agent can get at most one good. Moulin (1992) showed for 

this case that the utility profile is substitutable. Hence, the induced game is concave, and the 

Shapley and the egalitarian solutions are PM.  
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Additively separable preferences also constitute a substitutable domain. Given a problem 

(     ) with    is additively separable for all    , for a fixed    , marginal contribution 

of   to the efficient surplus  (   ) is constant and equal to         ( ). However, in this 

case, instead of the general approach of distributing many goods at once, we can just think of 

the problem as distributing | | goods separately. The solution to the general problem can be 

defined as the sum of solutions to | | separate problems. Obviously, if at each single good 

allocation problem the solution is PM, then their summation is also PM. Hence, for this domain 

of preferences there is a variety of efficient and PM solutions.
6
 

                     

  ( ) 2 0 0 3 2 1 3 

  ( ) 0 2 0 2 0 2 2 

  ( ) 2 0 0 2 2 0 2 

Table 1 

We know that substitutability is a sufficient condition for the concavity of the induced 

game, and hence for the existence of a PM solution. It also requires that individual preferences 

are submodular. However, submodularity of the individual preferences is not a necessary 

condition for concavity. Although agent 1’s preference is not submodular in the 3-person 

problem in Table 1, the induced game is concave
7
. 

What if all individuals have submodular preferences? Note that additively separable 

preferences constitute the border between the submodular (concave) and supermodular 

(convex) utility functions. At a first glance, if the least concave utility functions in submodular 

domain induce concave games, one may expect that when concavity becomes more severe, the 

induced game would be still concave. However, this intuition fails. Consider the 4-person, 3-

goods problem in Table 2. The induced game is not concave as  ( )   (   )    

 (   )   (  )    while all agents have submodular utility functions. Also, concavity of the 

game is a necessary but not a sufficient condition for Shapley solution to be population 

monotonic
8
. The same example also illustrates that the Shapley solution is not PM on the 

domain of submodular preferences. Here, we have    ({     })      , while    ( )      . 

                     

  ( ) 8 4 8 12 14 8 14 

  ( ) 0 1 4 1 4 4 4 

  ( ) 8 0 0 8 8 0 8 

  ( ) 0 8 0 8 0 8 8 

Table 2 
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8
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6 Problems with | |    

The problem of allocating a single indivisible object is studied by several authors. However, 

all population monotonic solutions to this problem (except the Shapley solution) are defined for 

the well-known airport (cost sharing) problem (see Thomson (2007) for a survey). This 

problem yields concave TU games and admits several population monotonic solutions other 

than the Shapley solution and the constrained egalitarian solution. It is easy to check that these 

two solutions also satisfy ESG when | |   . Our intention here is to work on the 2-goods 

case. However, to construct PM solutions for this case we need to define a property on 

solutions to the single good problem. 

For the single good problem, preference of agent   is represented by a number   , and (   ) 

represents a problem. Here, for simplicity we assume the ordered profile          . 

Efficiency dictates assigning the good to an agent with the highest   . Note that  ( )    . 

Then, for any efficient, individually rational, and single valued solution we have 

∑   (   )      , and      for all    . 

Given any ordered problem (   ), by the convention that     , Shapley solution is 

calculated as follows: 

     ∑
       

| | (   )
 
    for all     (3) 

Definition 3: A solution   is additively scale monotonic (ASM) if for any (   ) (    )     

such that for some     ,   
       for all    , we have   (    )    (   ) for all 

   . 

Lemma 1: The Shapley solution is ASM while the egalitarian solution is not. 

Proof: Without loss of generality, take any ordered problem (   )    , and      so that 

(    ) is defined as in the statement above. Note that the order is preserved at the profile   . 

Then, for each    ,           
      

 , and           
    

 . Therefore, 

   (    )     (   )    ⁄  for all    , by (3). 

To see that the egalitarian solution is not ASM, consider the following profiles for    : 

  (     ), and    (     ). Note that    (   )         (    ).      

Additive scale monotonicity is a fairly week property. A trivial example of a PM solution 

that is also ASM is the equal distribution of the efficient surplus    among the agents with the 

highest valuation. 

6.1 The case | |    

In this case, we have a more clear way of partitioning the monotone preferences in a useful 

way for the purpose of our analysis. Here, the monotone preferences are either superadditive, 

i.e.,   ( )    ( )    (  ) , or subadditive, i.e.,    {  ( )   ( )}    (  )    ( )  

  ( ), or both (additively separable), i.e,   ( )    ( )    (  ). Also, subadditivity and 

submodularity coincides. Moreover, they are not only necessary but also sufficient for 
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substitutability. Now, let   
    be the set of all problems such that    is monotone and 

subadditive for all    . 

Proposition 6: For any (     )    
    the induced TU game   is concave. 

Proof: Let (     )    
    and    . It suffices to show that  (   ) satisfies substitutability. 

The only relevant case is    , and   { } . Hence, we need to show  (  {  })  

 (  { })   (  { }). Note that  (  { })          ( ), and  (  {  })    ( )    ( ) 

for some distinct       or  (  {  })    (  )  for some    . Then, by definition, 

subadditivity implies  (  {  })          ( )          ( ).       

Corollary 2: The Shapley solution and the egalitarian solution are PM on   
   . 

Unlike the general case | |   , here, even if some or all agents have superadditive 

preferences, we have population monotonic solutions. We now introduce some extra notation. 

Fix a problem (     )     and let  ( ) be the induced TU game. For any    , define 

 ̅ (  )     {  (  )   ( )    ( )}, while  ̅ ( )    ( ) for      . Then, we have the 

perturbed problem (     ̅) and the associated TU game  ̅( ). The only difference between the 

two problems is the utilities of agents who have (strictly) superadditive utilities at the original 

problem. For such an agent the only difference is  ̅ (  )    ( )    ( )    (  ). Then, by 

construction, we have (     ̅)    
   . Now, define  ̃     (  (  )   ̅( )  ) , and 

 ̃( )         ̃ . 

Lemma 2: For any (     )    , we have  ( )   ̅( )   ̃( ). 

Proof:  Take any (     )    . Consider first the case  ( )    ( )    ( )  for some 

distinct      . Then,   (  )    ( )    ( )  for all    , and also  ̅( )    ( )  

  ( ). Hence,  ̃    for all     and  ̃( )   .  Now, consider the case  ( )    (  ) for 

some    . If   (  )   ̅ (  ) , again we have   ̅( )   ( )  and  ̃( )   . Now, let 

  (  )   ̅ (  ). Then, we have  ̃( )    (  )   ̅( ).     

    ( )   ̅ ( )   ( )   ̅ ( )   (  )  ̅ (  )   ̃  

  2 2 10 4 2 

  0 4 9 4 1 

  4 4 7 7 0 

  2 2 6 4 0 

Table 3 

Consider the 4-person problem in Table 3 which clarifies our construction. Note that 

 ( )    (  )    ,  ̅( )    ( )    ( )   . An efficient, individually rational, and 

single valued solution to the problem (     ) is just a nonnegative distribution of  ( )     

units of surplus to the 4 agents. We aim to write a solution as the summation of two solutions to 

two different problems. As the first component of our hybrid solution to the problem (     ), 

we pick a solution  ̅(     ̅). Then,  ̅( )    units of surplus is distributed by  ̅. By Lemma 
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2, the remaining to distribute is  ̃( ). Note that by definition,  ̃( )   ̃  for some     and in 

that case  ̃   ̃  for all    . Also,  ̃    for all    . Then, we can think of distributing 

 ̃( ) as allocation of a single good where agents’ valuations are  ̃ . Let us call this problem 

(   ̃). Then, the remaining  ̃( )    units of surplus is distributed by some  ̃(   ̃).  

Definition 4: Given any two solutions  ̅ on   
   , and  ̃ on   ,   is a hybrid (of  ̅ and  ̃) 

solution on    if for all (     )     we have, (   )   (     )  if   (     )  

 ̅ (     ̅)   ̃ (   ̃) for all    . 

Note that a hybrid solution is single valued and well-defined by Lemma 2. 

Proposition 7: Let   be a hybrid solution such that for all (     )    ,    ,     ̅   ̃  

where  ̅ is a solution to (     ̅), and  ̃ is a solution to (   ̃). 

(i)   is efficient, symmetric and continuous if both  ̅ and  ̃ are efficient, symmetric and 

continuous. 

(ii)   is population monotonic if both  ̅ and  ̃ are population monotonic, and  ̃ is ASM. 

Proof: We skip the trivial argument for efficiency and symmetry. Let  ̅ and  ̃ be continuous in 

 ̅  and  ̃ , respectively. By construction  ̅  is continuous in  . Also, we know that  ̅( )  

   {       ̅ ( )   ̅ ( )      ̅ (  )}  is a continuous function of  ̅ , and hence, it is 

continuous in  . Then, by definition  ̃  {   (  (  )   ̅( )  )}    is continuous in  . 

Therefore, both  ̅ and  ̃, and hence,   is continuous in  . 

Now, let  ̅ and  ̃ be population monotonic, and  ̃ be ASM. Take any (       )    . 

Note that by construction  ̅  is independent of the profile (the set of agents in the problem), and 

 ̅   ̅ 
  for all    . Hence, we have  ̅ (       ̅)   ̅ (     ̅ ) for all     as  ̅  is 

PM.  

Let  ̃( )  represent the profile derived from the problem (      ) , and  ̃  be the 

restricted profile of  ̃ to the agents in  . Here,  ̃( ) is not necessarily equal to  ̃ . Define 

   {     ̅(   )    (  )}. Note that for    ,  ̃    only if     . By PM (and 

hence SAC) we have  ̃ (     ̃)    for all       . Hence, to complete the proof it 

suffices to show  ̃ (     ̃)   ̃ (   ̃( )) for all     . 

Consider first the case  ̅(   )   ̅( ). Note that  ̃   ̃ ( ) for all    , and we have 

the desired inequality as  ̅  is PM. Now, let  ̅(   )   ̅( )    ̅   . Define    

{     ̅(   )    (  )} ,    {       ̅(   )    (  )    ̅} , and      

  . Then,  ̃ ( )   ̃    ̅  for all    ,    ̃ ( )    ̅  for all     , and  ̃ ( )    

otherwise. Now, consider the problem (   ̃ ). Note that PM implies the dummy property that 

if we add or remove agents with zero utility, allocation to the other agents does not change. 

Hence, we have  ̃ (     ̃)   ̃ (     ̃   )   ̃ (   ̃ )  for all    , by PM. Let 

{         } be the partition of    such that    is the set of agents in    with the highest 

  (  ),    is the agents with the 2
nd

 highest   (  ), etc. Also, define     ̅(   )    (  ) 
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for     ,      (  )    (  ) for     ,        and    , and      (  )   ̅( ) 

for     .   

Consider the problem (      ̃ ) where  ̃ 
   ̃     for     and  ̃ 

    for     . By 

ASM and the dummy property we have  ̃ (      ̃ )   ̃ (   ̃  )   ̃ (   ̃ ) for all   

 . Then, add    to utilities of all agents in problem (      ̃ ) and then add the agents in    to 

the problem assigning them 0 utilities. By the same argument, no agent in   is worse off 

compared to  ̃ (      ̃ ) and hence to  ̃ (   ̃ ). Recursively applying the same argument 

where at the last step we add    to utilities of agents in      and add the remaining agents 

  (    ) with zero utilities, we reach the problem  ̃ (   ̃( )).  As at each step, none of 

the agents in   gets worse off, we have  ̃ (   ̃( ))   ̃ (   ̃ )   ̃ (     ̃)  for all 

   .       

Corollary 3: The hybrid Shapley solution (  ̂(     )    (     ̅)    (   ̃)) is efficient, 

symmetric, continuous and population monotonic. 

The egalitarian solution is population monotonic for each component of the hybrid solution. 

However, the hybrid egalitarian solution is not PM. 

    ( )   ( )   (  )  ̅ (  )   ̃ ( )  ̃ ({   }) 

  0 0 6 0 4 6 

  0 0 2 0 0 2 

  0 0 2 0 0 2 

  1 1 2 2 0 * 

Table 4 

Consider the problem in Table 4. Note that  ̅( )   , and  ̅({   })   . As the egalitarian 

solution is in the SAC, agents 1, 2, and 3 get 0 at both problems (     ̅)  and 

({   }    ̅{   }). Also,    (   ̃)   , and    ({   }  ̃({   }))   . Thus, agent 1’s final 

utility decreases when agent 4 leaves.  

Finally, we show that ESG is not compatible with PM. Consider the problem in Table 5. For 

any population monotonic solution, we have        (  )     and        (  )  

  . Also,            . Therefore,      contradicting ESG. 

    ( )   ( )   (  ) 

  0 10 10 

  10 0 10 

  0 0 10 

Table 5 
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