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Abstract 

We introduce a new cooperative stability concept, absence-proofness (AP). 

Given an allocation problem in a society  , and a solution well defined for all 

subsocieties, a group of people     may benefit by leaving a subgroup 

    “out” of the allocation process. After the allocation takes place in the 

society    , agents in     may reallocate what they received, plus  ’s 

endowments (if they have any) among all of  . This reallocation is profitable if 

it is Pareto superior to what   would get in the society   had   not been left 

aside. We call the solutions that are immune to this kind of manipulations 

absence-proof. Absence-proofness implies core stability by definition. In fair 

division problems, where core has no bite, AP imposes core-like participation 

constraints on solutions. In both fair division problems and TU games, well-

known population-monotonicity (PM) property implies AP. Although solutions 

that are AP but not PM exist for very specific problems, our work suggests that 

these properties have very close formal implications. In exchange economies 

with private endowments we provide many negative results. Particularly, the 

Walrasian allocation rule is manipulable. 
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1 Introduction 

Individuals involved in joint economic activities do so voluntarily; whether they show up at 

the scene or not depends on what they get (or expect to get) in the activity, and their outside 

option. If an individual or a subgroup of individuals know or anticipate that he (they) can do 

better on his (their) own, we expect them not to join. Designing allocation rules that make 

everyone or every subgroup willing to participate is the motivation for the familiar properties 

known as individual rationality, and core stability. We may also need to prevent the kind of 

partial secession discussed first in the context of exchange economies by Postlewaite (1979). 

Given an allocation rule, an individual may benefit by withholding some of his endowment and 

consuming it together with his allocation in the “reduced” economy where he provides the rest 

of his endowment. A rule that makes such moves unprofitable is called withholding-proof. 

In the same spirit, we propose a very general group manipulation and the related concept of 

“absence-proofness” (AP). Given an allocation problem in a society  , and a solution well 

defined for all subsocieties, a group of people     may benefit by leaving a subgroup     

“out” of the allocation process. After the allocation takes place in the society    , agents in 

    may reallocate what they received, plus  ’s endowments (if they have any) among all of 

 . This reallocation is profitable if it is Pareto superior to what   would get in the society   had 

  not been left aside. We call the solutions that are immune to this kind of manipulations 

absence-proof.  

Absence-proofness is related to both core stability and withholding-proofness (WP). Indeed, 

AP implies core stability, as we see by taking    . However, like WP, AP requires the 

knowledge of how the solution works in the problem reduced to    . Therefore, while the 

core is defined for a single allocation problem, absence-proofness is a property of an allocation 

rule. Note that by taking      , AP also implies Pareto optimality. 

Our work suggests that the absence-proofness, which is quite different than the well-known 

population-monotonicity (PM) property in spirit, has surprisingly close formal implications 

with PM in fair division problems and TU games. Also, AP is a very demanding property in 

exchange economies with private endowments. 

An important feature of absence-proofness is that it applies to a larger range of models than 

the core and WP. Both WP and core stability apply to exchange economies or any economy 

where resources are privately owned to start with. Core stability also works in more abstract 

problems such as transferable utility (TU) cooperative games. However, both concepts lose 

their bite for the classical fair division problem where we distribute a commonly owned set of 

goods. On the other hand, AP has much to say in all these problems. Here, we study absence-

proofness in three different problems; surplus sharing TU games
3
, economies with private 

endowments, and fair division problems. 
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1.1 TU games 

In the TU game (   ), AP is related to but more complicated than core stability. Agents in 

  can generate a surplus of  ( ) if they stay out. This surplus is no more than their total 

allocation had they appeared if a rule is a core selection (as required by AP). Therefore, for 

    to manipulate, the loss of agents in   due to staying out of allocation process should be 

compensated by an increase in the total payoff of agents in     in the reduced problem. Thus, 

PM, which simply requires that no agent gains from the departure of some agents, rules out the 

possibility of manipulation. 

Population-monotonicity has both a normative and a strategic interpretation in TU games. It 

was first discussed in this context by Sprumont (1990) and Moulin (1990a) (See Section 2 for a 

more detailed literature on PM). If an additional agent extends the cooperative opportunities, 

this should not harm any existing agents. On the strategic side, if an existing agent loses, he 

may veto the newcomer. However, analyzing this kind of strategies requires extensive 

modeling of the coalition formation process. The strategic move we discuss here is simple. The 

loser just pays the newcomer to stay out. If a rule is absence-proof, no agent   has an incentive 

to pay the newcomer to make him stay out even if   loses when newcomer appears.   

In Section 2, we examine this one-way logical relation between PM and AP in several 

examples. Sönmez (1993) showed that the nucleolus is not population-monotonic on the set of 

convex games. In Section 2.2, we show that it does not satisfy AP, either. Sprumont (1990) 

showed that the bilateral assignment games
4
 almost never admit a population-monotonic 

solution. In these games, we have a clear distinction between the two properties. In Section 2.3, 

we give the necessary and sufficient conditions for the existence of AP solutions in     

bilateral assignment games, and propose some solutions (see Table 2.1, 2.2 and 2.3). Indeed, 

when they exist, absence-proof allocations constitute a central cube in the set of core 

allocations (see Figure 2.1). However, these conditions cannot be nicely generalized to cases 

with more players in each side.  

In Section 2.1.1 we provide alternative definitions for the core, AP and PM. These 

definitions allow us to compare the three properties from a normative viewpoint. Norde and 

Slikker (2011) designed a set of solutions, which are general nucleoli, and population-

monotonic whenever achieving PM is possible. In Section 2.4, based on our alternative 

definitions we reevaluate the nucleolus and design a solution ( -monoclus) that is absence-

proof, whenever achieving AP is possible. We also compare this solution with the nucleolus. 

Interestingly, in a subset of bankruptcy games they coincide. 

1.2 Exchange economies with private endowments 

In Section 3, we show that in the context of indivisible goods with monetary transfers, 

achieving AP is impossible. We illustrate this impossibility in several examples for different 

problems; Böhm-Bawerk markets, house assignment problems (Shapley and Shubik 1971), and 

                                                           
4
 Players are partitioned into two groups    and    . The characteristic function   is defined solely by 

the surplus generated by the pairs  (   ),      and     , and its superadditive cover. 
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single seller auctions. In housing markets introduced by Shapley and Scarf (1974) where no 

monetary compensation is available, only a weaker version of AP can be achieved. This version 

blocks the possibility of a strict improvement in the welfare of all agents in the manipulating 

coalition. We also show that the core mechanism that is calculated via the famous top trading 

cycle algorithm uniquely achieves the weak AP. In problems with divisible goods, on the 

classical domain, Walrasian allocation is not absence-proof. We also show by means of 

example that the manipulation of the Walrasian allocation is not a rare occurrence. Even in a 

problem with three agents who have the same Cobb-Douglas preferences, manipulation is 

possible. Our results coincide with Thomson (2013) where he introduces withdrawal-proofness, 

a concept related to but weaker than AP, in exchange economies and fair division problems. 

There, the manipulation argument is exactly the same. However, the manipulating coalition 

consists of only two agents, i.e. | |   , and | |   . 

1.3 Fair division problems 

In an environment with a fixed common endowment, it is normatively appealing to assume 

that no one benefits the presence of additional agents. This interpretation of PM was introduced 

by Thomson (1983). Here, agents have equal claims on the common endowment, and hence, 

the strategic interpretation of PM loses its bite. However, strategic move in the argument of AP 

is still intact. If agents in   renounce their claims, the manipulating coalition     has only 

the allocation of     in the reduced problem to redistribute. Suppose a Pareto optimal 

allocation rule is population-monotonic, and S manipulates it by the absence of  . By PM, all 

the agents in     are better off in the reduced problem. Also, the redistribution of what     

gets in the reduced problem to all the agents in   is Pareto superior to the allocation to   in the 

society  . This contradicts that the allocation in society   is Pareto optimal. Hence, under 

efficiency, PM implies AP (Theorem 4.1). For a related literature on PM, and the corollaries 

see Section 4.2 and 4.3. 

Aside from this strong sufficient condition (PM) for AP, we provide a sufficient condition 

for manipulation (see Proposition 4.2). As a corollary, in Section 4.2, we show that the 

competitive equilibrium with equal incomes solution is not AP in the problem of distributing a 

perfectly divisible bundle in   
 . 

The simplicity of the model of allocating a single object with monetary transfers enables us 

to give a simple characterization of AP rules, which clarifies the difference between PM and 

AP (see Propositions 4.3 and 4.5). Indeed, it shows how close they are. Thus, by replacing PM 

with AP, we cannot escape the incompatibility between one of the most desired fairness 

property “envy-freeness” (Foley 1967) and PM (see Alkan (1994) and Moulin (1990b)). 

However, rules that are AP but not PM exist and we introduce two of them. First one is a serial 

oligarchy solution. The other lexicographically favors the agents, starting with the agent who 

has the lowest valuation for the object while respecting two upper bounds (see Proposition 4.7). 

A weaker version of PM requires that when some agents leave, remaining agents should be 

affected in the same direction. The second rule we introduce is not even weakly PM. 
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2 Absence-proofness in TU Surplus Sharing Games 

Basic notions Given a society   {       }   , where   denotes the set of all finite 

societies, a characteristic function         describes the value that a group of agents     

are able to create on their own, with the convention that  ( )   .  Hence, a tuple (   ) 

defines a surplus sharing TU game. 

For a fixed (   ), an allocation   (  )      
  is a vector s.t. ∑        ( ).   is 

efficient if ∑        ( ), and individually rational if     ( ) for all    . The imputation 

set  (   ) consists of all the efficient and individually rational allocations. Given (   ) and 

   , the game (    ) is a subgame of (   ) if for all        ( )   ( ). By abuse of 

notation, we will write (   ) instead of (    ) or even sometimes game   when there is no 

confusion about the fixed (   ). An allocation scheme  ( ) is a mapping that assigns an 

efficient allocation to each subgame, i.e.  ( )    
  for all     and ∑      ( )   ( ).5 

Let    be the set of all games admissible for   and   ⋃   
   . An allocation rule 

defined on the domain of games     assigns an allocation at each game in  . We call a 

domain   rich if for any game (   ), all the subgames of that game are in  , as well. Note that 

an allocation rule on a rich domain   induces a unique allocation scheme for each game in   

but not vice versa. A game (   ) is convex if for all       and    , we have  (  

{ })   ( )   (  { })   ( ). 

The core of a game (   )  is the set  (   )  {    
  ∑        ( )     } . A 

game (   ) is balanced if it has a nonempty core, and totally balanced if all of its subgames 

are balanced. An allocation scheme is a core selection if it assigns a core allocation to each 

subgame. Similarly, an allocation rule is a core selection on   if it assigns a core allocation to 

each game in  . 

2.1 Absence-proof allocation schemes 

Core stability is the most fundamental stability property in the context of TU games. If not 

satisfied, a group of agents   would stay out and enjoy the surplus of  ( ), which is more than 

their total payoff. This group decision requires three basic assumptions. Agents should know or 

anticipate the outcome, act voluntarily, and surplus generation as well as the redistributions out 

of the allocation process is possible. Without any further assumptions, by the help of following 

example, we discuss a new outside option that is neither foreseen, nor prevented by the core 

stability.   

Example 2.1:   {     }   {     }  and   {   };  ( )     {|   | |   |} , for 

all      

There are three workers with the same skill, and two firms are looking for exactly one 

worker with that skill. Each firm can employ at most one worker. A worker can create 1 unit of 

surplus if hired, and is useless otherwise. Here, the core is simple to describe. For each 
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 By abuse of notation, we write  ( ) instead of  (   ), and  (       ) instead of  ({       }). 
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subgame  , as long as |   |  |   |, the scarce type of agents in   equally share the entire 

surplus of  ( ). Hence, the unique core allocations of game   and subgame   {     } are 

  (         ), and    (         ), respectively. It is also well known that the game (   ) 

in the example is totally balanced. 

Let  ( )  be a core selection. Then,  ( )  (         )  and  (     )  (         ) . 

Consider the coalition of workers  . Agent   asks the other two to stay at home. Then, the 

active agents are     and  . As two firms are competing to hire the same worker, agent    gets 

the entire surplus of   unit in game {     }. Note that any redistribution of   unit among the 

workers is a Pareto improvement with respect to their allocation in  ( ). 

Definition 2.1: Let (   ) be given,   is an absence-proof allocation scheme (APAS) if for 

all         , 

 ∑        (   )   ( )  ∑      ( )  (1) 

Here, we enlarge the outside options of the coalition of  . In addition to a total secession of 

the coalition (the case     in (1)), as prevented by core stability,   may also leave a strict 

subset of it outside the allocation process, and can still benefit. These additional options 

correspond to the case     in (1). 

When we think of   as a maximal society and the population as a variable, the domain   of 

games we would face are (   )  and all of its subgames. Hence, allocation schemes are 

allocation rules defined on  . Adopting this interpretation, we ask  ( ) to satisfy the desired 

property not only in game (   ), but in all the subgames , i.e. for all    .
6
 

Remark 2.1: An APAS is core selection, and hence efficiency at problem   even had we not 

imposed efficiency on  ( ) by definition. Just set    . 

In TU game context, allocation schemes are widely used solution objects, especially in the 

literature on the well-known population-monotonicity property. The same object appears as 

generalized allocation in Moulin (1990a), and payoff configuration in Thomson (1995). 

However, use of allocation schemes is more common, following Sprumont (1990) where he 

defines the population-monotonic allocation schemes (PMAS). An allocation scheme  ( ) is 

PMAS if   ( )    ( ) for all      ,    . Notice a PMAS  ( ) is a core selection, as 

 ( )  ∑      ( )  ∑      ( ) for all      . 

The game in Example 2.1 clearly does not admit an APAS. Note that, there, the payoff of 

worker   increases by absence of the other workers. Indeed, this is not a coincidence, but a 

requirement for the workers to manipulate the allocation scheme.  

Sprumont (1990) is the first to discuss the strategic interpretation of PM. He argues that if 

an agent   gets more in a subgame, say   ( )    ( ), then   will be tempted to form the 

smaller coalition   by using his bargaining skills or by any other means. The strategic move we 

define here is indeed a particular action that   could take; that is convincing     to stay out by 

paying them. 
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 See Sprumont (2008) for a detailed argument on the use of allocation schemes. 



7 
 

Proposition 2.1: Given a game (   ), if   is a PMAS, it is also an APAS. 

Proof: Let (   ) be a game and   be a PMAS at this game. Take any        . PM 

implies ∑        (   )  ∑        ( ), and  ( )  ∑      ( )  ∑      ( ). Then, (1) 

holds.       

Proposition 2.1 provides a strong reason to choose PMAS’s among the core selections. It 

also tells us a lot about APAS’s. First of all any game that admits a PMAS also admits an 

APAS. Any game that is a linear combination of monotonic simple games, and only those, 

admits a PMAS (Sprumont 1990). Norde and Reijnierse (2002) give another characterization 

by generalizing the idea of vector of balanced weights that is used to characterize the balanced 

games. Existence of (maybe a similar) a nice and compact characterization of the set of games 

that admit an APAS is still an open question. We provide a characterization for     bilateral 

assignment games in Section 2.3. 

Other corollaries to Proposition 2.1 are as follows: The Shapley value (Shapley 1962) and 

sequential and monotone Dutta-Ray solutions (Dutta and Ray 1989) are absence-proof on the 

set of convex games (Sprumont 1990 and Hokari 2002). The proportional allocation scheme is 

absence-proof on average monotonic games (Izquierdo and Rafels 2001).  

By Remark 2.1, AP solutions exist only if the game is totally balanced. We know by 

Sönmez (1993) that the nucleolus (Schmeidler 1969) is not PM on convex games. In Section 

2.2, we show that it is not even AP. Sprumont (1990) and Innara (1993) proved that the 

Shapley value is a core selection on the class of average (quasi) convex games
7
 while Sprumont 

also showed that the Shapley value is not a PMAS on this domain. 

Open Question 1: Is the Shapley value AP on the set of average (quasi) convex games? 

It is important to keep in mind that the formulation in (1) is critical and not appropriate for 

all problems that are represented by a TU game. TU games are commonly simplified 

representations of the feasible utility space in allocation problems with private or common 

endowments, and quasilinear preferences that allow monetary transfers. In a fair division 

problem, for all    ,  ( ) represents the monetary equivalent of the common endowment 

for agents in   when they are the only claimants. However, when the set of claimants is    , 

coalition   can generate no surplus if they renounce their claim and leave the scene. Inequality 

(1) does not represent this situation. The argument is more subtle for the case of private 

endowments. Suppose we are reallocating privately owned indivisible goods, say cars, and   

stays out with the cars they own.     brings its allocation after the allocation process in the 

society    . If an agent from   has a utility higher than everyone else for a car that     

brought in, he gets it in the Pareto improving reallocation. Then, the monetary equivalent of 

 ’s “new” total endowment (cars that     got in the allocation process plus the cars that 

agents in   own) for agents in   is more than ∑        (   )   ( ). So, the results in this 

section are valid for TU games where the allocation is in actual money terms. 

                                                           
7
 A game (   ) is quasi-convex if for all      , we have ∑ ( ( )   (   ))    ∑ ( ( )     

 (   )) 
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As an end note for the formulation (1), we may have asked for a weaker property which 

ensures no manipulation only at the grand game (   ), and hence (1) to hold only for    . 

In that case, for any balanced game we can write a “weakly” absence-proof allocation scheme. 

It is an easy exercise to see that (1) holds for the case     for the following “proportional” 

allocation scheme: Fix an arbitrary     (   ). Define for all    ,   ( )     ; for all 

       ,    ( )    ( ( )  ( )⁄ )  if  ( )   , and   ( )    if  ( )   . 

Applying the proportional allocation scheme to the game in Example 2.1, we have  ( )  

(         ), and  (     )  (             ). Then, if for some reason workers   and   are not 

available anymore, it does not assigns a core allocation to the game {     }. 

2.1.1 Comparing the core, AP and PM: a normative approach 

Besides being a stability property, core can be conceived as a normative property as well. 

Let (   )  be a totally balanced game and   be a core selection. Consider two disjoint 

subsocieties  ,    and the subgame     . Note that for any totally balanced game, we can 

write  (    )   ( )   (  )   (    ) with  (    )   . Both subsocieties guarantee a 

payoff of  ( ) and  (  ), respectively at   in subgame     . Then, the remaining  (    ) is 

distributed among the agents in     . So, if we interpret  (    ) as the value created by 

merger of two societies, core dictates that none of the two societies should gain in total more 

than that amount when they merge. The next proposition relates this normative interpretation to 

absence-proofness, and population-monotonicity. 

Proposition 2.2: Let (   ) be a game,   be an allocation scheme and        such that 

      . 

(i)   is a core selection if and only if  we have, 

 ∑ (  (    )    ( ))     (    )  (2) 

(ii)   is an APAS if and only if for all     we have, 

 ∑ (  (    )    ( ))     (    )  (3) 

(iii)   is a PMAS if and only if for all        we have, 

 ∑ (  (    )    ( ))  (   )  ∑ (  (    )    ( 
 ))  (    )   (    )  (4) 

Proof: We only prove (ii). and omit the trivial arguments for (i). and (iii). 

Necessity. Let   be an APAS at (   ). Take any        s.t.       , and any    . (1) 

implies that ∑        ( )   (  )  ∑     (   )   (    ) . Then,  ( )  ∑   ( )    

 (  )   (    )  ∑      (    ). Therefore, (3) is satisfied. 

Sufficiency. Let (   ) be a game,   be an allocation scheme at (   ), and (3) hold. Take any 

       . Then, (   )  (   ) , and by (3), ∑        ( )  ∑   (   )      

 ( )   (   )   ( )   (     ) . Thus,  (   )  ∑   (   )       ( )   ( )  

∑        ( ). Therefore, ∑        (   )   ( )  ∑      ( ), and hence (1) holds.       
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By Proposition 2.2, we can read absence-proofness as follows: When two societies merge, 

no coalition from one of these societies gets an extra surplus that is more than the value created 

( (    )) by this merger, while population-monotonicity does not allow any coalitions from 

the joint society to gain more than this value. 

2.2 Nucleolus on the set of convex games 

The class of convex games has been a special area of interest in the literature on PMAS for 

two reasons: they constitute a rich domain, and usually have a large set of core allocations. The 

literature on PM mainly focused on allocation schemes that are based on applying allocation 

rules (or sometimes referred to as value operators) to all subgames of a game in a given rich 

domain. Sönmez (1993) showed that the “extended” nucleolus is not PM on convex games in 

general. However, on a particular subset of (dual of) these games, known as airport games, it is 

PM. 

The lexicographic ordering of    is denoted by   ; that is      for        if     or 

there is   {     } such that         for all      and      . 

Now, let (   ) be such that  (   ) is nonempty. For each allocation    (   ) define the 

excess of coalition     as  (   )  ∑        ( ). Let  ( )   |  | have the excesses of 

allocation   ordered increasingly. Then, the unique allocation  (   ) such that for each   

 (   ),  ( (   ))    ( ) is called the nucleolus of the game. Let ℳ denote the extended 

nucleolus, i.e. given any game (   ), ℳ( )   (   ) for all    . 

Proposition 2.3: The extended nucleolus ℳ is not AP on the set of convex games. 

Proof: Consider the following games (   ), and (     );   {     } ,      { }:      

 ( )  

{
 
 

 
 

         | |           
         | |           
         | |           
                                
                                   

    ( )  {
 ( )                      
 (  { })            
                            

 

Note that (   ) is a subgame of (     ) and both games are convex. Also, for all       

{         }  and   s.t.       we have  (   )   (   ) , and   (   )    (   ) . It is 

easy to check that here nucleolus treats these agents equally, and we have   ( )     for all 

    and   ( )       . Then, the minimum excess is maximized for   { } with     

and      . Hence we have; 

  ( )       for all     and   ( )      

In game (     ), the minimum excess is trivially maximized for   { } and       { }. 

Then, we have   ( 
 )      and ∑   (  )        . The argument for distributing      to 

agents in   is similar to the one in game (   ). Hence, we have; 

  ( 
 )      for        ;   ( 

 )      and   ( 
 )      
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Then, by absence of agent   at game (     ), agents 6 and 7 would enjoy a total of     instead 

of    .       

2.3 Bilateral assignment games 

The society   consists of two disjoint type of agents   and  , i.e.      , and     

 . No coalition consisting of agents only from   or   can create a surplus. A generic pair 

(     )      can create  (   )   . A coalition   containing several agents of each type 

generates the surplus  ( )  by forming pairs (     )  efficiently and summing up the 

corresponding  (   )’s, i.e. for         s.t.      and     ,  ( ) is the maximal sum 

∑ (   ) when we assign agents of    to those of   . We call an assignment of    to     optimal 

if it generates  ( ), and we say that a pair is optimal in   if it appears in some optimal 

assignment that generates  ( )  We will represent a bilateral assignment game by the matrix 

 (   ). 

Regarding the economic environments that would induce this type of games, we can think 

of   as the set of potential workers with similar skills, and   as the firms that needs only one 

worker with this specific skill. We can also think of   as a set of flute players, and   as a set of 

piano players, who are seeking performance positions for duos. 

One nice feature of these games is that they are totally balanced. However, as we show in 

Proposition 2.5, a PMAS is almost never admissible for this class of games. Although, there are 

games which admit an APAS, there are severe limitations on the surplus opportunities. In 

games with two agents on each side we are able to identify the necessary and sufficient 

conditions for the existence of an APAS. Unfortunately, there is no simple procedure to 

generate an APAS. Moreover, these conditions would not be nicely generalized to the games 

with    .  

Lemma 2.1: Shapley and Shubik (1971). Given a bilateral assignment game ((   )  ),  ( ) 

is a core allocation if and only if for all    ,     we have   ( )    ( )   (   ); with 

equality if (     ) is an optimal pair in  . An agent who is not in any optimal pair gets 0.  

Lemma 2.2: Let ((   )  )  be an assignment game, and (     )  be an optimal pair at 

subgame (   ). Then, for any APAS   we have,   ( )    (   ), and   ( )    (   ). 

Proof: Let everything be as in the statement of the lemma. By Lemma 2.1, we have   ( )  

  ( )    (   )    (   )   (   ). Also, as (     )  is an optimal pair at (   ) ,  (   )  

 (  {   })   ( ) . Let wlog   ( )    (   ) . Then, as   (   )   (  {   })    ( )  

∑       {   } ( ), the coalition   { } is better off by leaving   {   } out of the game  .        

The idea in Lemma 2.2 is crucial for the characterization of APAS’s in 3-person games, and 

the conditions for the existence of an APAS in 4-person (   ) games. As the size of the 

society grows, in case (     ) is an optimal pair in game  , it is possibly optimal for many 

other subgames of  . Lemma 2.2 indicates that absence-proofness become more restrictive 

with the size of  . 
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A 3-person (   )  game is defined by two numbers and a 4-person (   )  game is 

defined by four numbers. To get rid of notational complexity we write these numbers in an 

increasing manner i.e.,        for 3-person games and             for 4-person 

games. 

Proposition 2.4: Let ((   )  ) be a generic 3-person game as shown in the 

matrix. Then,   is an APAS if and only if it is efficient at each  ,   ( )  

  (   )    ,   ( )    (   ),   ( )    and   ( )    (   ). 

Here in 3-person games, the only difference between an APAS and a PMAS is that a PMAS 

gives nothing to agent 3 in games   and {   }, while an APAS admits a positive payoff to 

agent 3 in game {   }. For the sake of completeness we now duplicate the result, Proposition 2 

in Sprumont (1990). 

Proposition 2.5: Let ((   )  ) be a bilateral assignment game with | | | |    such that for 

some        and       , we have  (   )    for   {    } , and   {    } . Then, game 

((   )  ) does not admit a PMAS. 

Proof: Let ((   )  ) be as in the premise of the proposition with {    }  {   }, {    }  

{   } and wlog  (   )    . Suppose for a contradiction that   is a PMAS  Then,   is a core 

selection, and by Lemma 2.1 we have,   (     )    (     )   . Then, PM implies 

  (   )    (   )    and this contradicts that   is efficient.       

Proposition 2.6: Let ((   )  )  be a game s.t. | |  | |   . There are three generic 

configurations of the value matrix and the conditions stated for each generic case are necessary 

and sufficient for the existence of an APAS. 

Case 1:       are diagonal 

⇒ ( )           

         (  )           

        

          

          

Case 2.1:       are inline 

⇒ ( )           

         (  )           

        

          

          

Case 2.2:       are inline 

⇒ ( )           

         (  )          

        

          

          

 

Note that the game in Example 2.1 is a particular bilateral assignment game where all 

entries are 1. Any     subgame violates all the conditions above. In Appendix, we show that 

the allocation scheme in Table 2.1 is an APAS for Case 1. We also propose two different 

APAS’s for the other cases, and show that the conditions in each case are necessary. 
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When all entries are strictly positive, for Case 1 and Case 2.2, efficiency induces a unique 

optimal assignment. For Case 2.1, in case     , absence-proofness requires a unique optimal 

assignment where agents who generate the highest payoff of    are matched. 

    ( )   ( )   ( )   ( ) 

{       }                   

{     }              

{     }              

{     }              

{     }              

{   }               

{   }              

{   }              

{   }        (   )       {          } 

Table 2.1 

Even in a     game, AP rules out most of the core allocations available at (   ) . 

Consider the game (   )  ((   )  ) in Case 1 of Proposition 2.6. Let (           ) be an 

efficient allocation. By Lemma 2.1, core is described by the following inequalities: 

         ,          ,          ,          

We can rewrite these inequalities as follows: 

   (     )     ,    (     )     ,       ,       

  

  

 

 

 

 

 

 

 

 

Figure 2.1 

The dotted area in Figure 2.1 shows the set of all core allocations. By Lemma 2.2 agents   

and   gets (     ) in games {     } , and {     } . Then, applying Proposition 2.4 to these 

games, we have the first inequality below. By a similar argument for agents {   }, and games 
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{     } and {     }, we have the second inequality. So, AP induces the following additional 

restrictions on this allocation: 

            ,             

The dashed area in Figure 2.1 shows the set of core allocations that an APAS may assign to 

game (   ). This rules out the two famous (extreme) solutions, A-optimal and B-optimal 

allocations. Here, the A-optimal allocation is       ,       and conversely B-optimal 

allocation is        . The allocation scheme in Table 2.1 corresponds to the southeast 

corner of the dashed square below. We can think of the northeast and the southwest corners of 

that square as the restricted A-optimal and B-optimal allocations, respectively. Unfortunately, 

we may not be able to write an APAS that assigns one of those two allocations at (   ) 

regardless of the surplus opportunities, even though they satisfy both conditions in Case 1. We 

omit the exhaustive argument. 

Note that the boundaries of the square in Figure 2.1 are derived by Proposition 2.4, while 

the conditions in Proposition 2.6 ensure that this set is nonempty. The following example 

shows that even if all the     subgames of a game satisfy the conditions in Proposition 2.6, 

that game may not admit an APAS. The game in the example is only a     game, and this 

gives us a hint of how much more restrictive absence-proofness becomes as the society 

expands. 

Example 2.2: 

Note that, all three of the     subgames fall into a different case of the 

Proposition 2.6. Suppose   is an APAS at the game (   ). The optimal 

assignment with the surplus of    is ((     ) (     )). By Proposition 

2.4, we have   (     )    (   )   , and   (     )    (   )   . By Lemma 2.2, we 

have   ( )   , and   ( )   . Thus,   ( )    ( )    ( )   . Now, let   {   } 

and consider the game     {     }. By Proposition 2.4,   (     )   . Then, as  ( )  

 , {     } would be better off by absence of   at (   ). Thus, this game does not admit an 

APAS. 

2.4 General nucleoli 

In the literature on PMAS, the primary issue has been to figure out if well-known allocation 

rules satisfy population-monotonicity on a certain class of games. Norde, and Slikker (2011) 

departed this trend and focused on constructing PMAS’s for an arbitrary game (   ). They 

introduced the solution monoclus (a general nucleolus, see Maschler et al (1992)) and some 

variations, which are population-monotonic whenever a PMAS exists. Among those solutions, 

we inspire from  -monoclus and define  -monoclus, which is absence-proof whenever an 

APAS exists.  

Given a game (   ) and an allocation scheme  , for any triple (     ) with       

 , the monotonicity of   with respect to (     ) is defined as    (  (     ))     ( )  

          

    3 5 0 

    2 8 3 
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  ( ) . Note that an allocation scheme is population-monotonic if and only if all the 

monotonicities are nonnegative. 

Now, define the set   {(     )        }  and let  ( )   | |  have all the 

monotonicities of   corresponding to elements in   as its coordinates, in a weakly increasing 

order. Let  ( (   ))  denote the set of all allocation schemes at game (   )  that yields 

efficient and individually rational allocations at each subgame i.e.,  (   )   (   ) for all 

    for all    ( (   )). Then,  -monoclus is defined as follows: 

 ℳ (   )  {   ( (   ))  ( )    ( )            ( (   ))} (5) 

ℳ (   ) is nonempty and consist of only one element at each game with a nonempty 

imputation set  (   ) as the set { ( )   | |    ( (   ))} is convex and compact. Note 

that if a game admits an allocation scheme   with a nonnegative  ( ), and hence admits a 

PMAS,  (ℳ (   )) is also nonnegative, and ℳ (   ) is a PMAS. 

2.4.1 The extended nucleolus 

By Proposition 2.2, we say an allocation scheme is a core selection if and only if we have 

 (     )  ∑ (  ( )    ( ))      for all      . We can rewrite the inequality as 

follows: 

 ( )   ( )   (   )  ∑   ( )     ( )    ∑   ( )       (   )   . 

Renaming      , and    , we have ∑   ( )     ( )    for all      . 

Now, define     (  (   ))   ∑   ( )     ( ) , and the set   {(   )      } . 

Note that     (  (   ))  ∑    (  (     ))   ( ( )  )    (as defined in Section 

2.2). Let  ( )   | | be the vector that has all the  -monotonicities of   corresponding to 

elements in   as its coordinates in a weakly increasing order. Then,  -monoclus is as follows: 

 ℳ (   )  {   ( (   ))  ( )    ( )            ( (   ))} (6) 

As the set   { ( )   | |    ( (   ))}  is convex and compact, ℳ (   )  that 

lexicographically maximizes  ( ) within   exists and is unique at each game with a nonempty 

imputation set  (   ). 

Note that  ( )  consist of the excess vectors  ( ( )  )  associated with the allocation 

 ( )  induced by   at each subgame  . The difference between the  -monoclus and the 

extended nucleolus is that the latter lexicographically maximizes the ordered vector of excesses 

associated with each subgame separately, while the former does the maximization at once for 

all subgames. However, both procedures yield the same outcome. 

Proposition 2.7: Given any (   ),  -monoclus (ℳ ( )) is the extended nucleolus (ℳ( )). 

Proof: Suppose for some ℳ ( )  ℳ( ) for some    . Consider the allocation scheme: 

 (  )  ℳ (  ) for all      and  ( )   ( ) where  ( ) is the nucleolus of subgame 
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(   ). Note that for any      and     ,  ( (  )  )   (ℳ (  )  ). Then, by definition 

of the nucleolus we have  ( )    (ℳ ).       

At a first glance, defining  -monoclus may seem artificial and unnecessary. However, its 

construction, and its equivalence to the extended nucleolus are important to understand the 

general nucleolus we define in the next subsection, and to compare it with ℳ. 

2.4.2 The  -monoclus: an APAS whenever a game admits one 

By Proposition 2.3, we say an allocation scheme is absence-proof if and only if we have 

 (     )  ∑ (  ( )    ( ))      for all        . We can rewrite the 

inequality as follows:  

 ( )   ( )   (   )  ∑   ( )    ∑   ( )       

 ∑   ( )      ∑   ( )      ∑   ( )       (   )     

  ( ( )    )  ∑   ( )      ∑   ( )         

Renaming    ,      , and      , we have  ( ) is absence proof if and only if 

 ( ( )  )   ( ( )  )   ( (   )  )    for all      , (   )        . 

Now, let   {(     )       (   )        }. Then, the  -monotonicities of   

corresponding to elements in   are defined as follows: 

     (  (     ))    ( ( )  )   ( ( )  )   ( (   )  )  (7) 

Indeed, the manipulation argument is clear when a  -monotonicity is negative. If   leaves 

the game   and produces  ( ) outside the allocation procedure, their loss is  ( ( )  ). Also, 

the loss of   due to the absence of   is  ( ( )  )   ( (   )  ). If the total loss of 

agents in     is negative, i.e.,     (  (     ))   , then they would manipulate by 

absence of   at  . 

Let  ( )   | |  be the vector that has all the  -monotonicities of   corresponding to 

elements in   as its coordinates in a weakly increasing order. Then,  -monoclus is defined as 

follows: 

 ℳ (   )  {   ( (   ))  ( )    ( )            ( (   ))} (8) 

Note that the set   { ( )   | |    ( (   ))} is convex and compact. Then, the 

following proposition follows immediately by construction of the  -monoclus. 

Proposition 2.8: ℳ (   ) exist and unique at each game with a nonempty imputation set 

 (   ). Moreover, if a game (   ) admits an APAS, then ℳ (   ) is an APAS. 

2.4.3 Comparing the  -monoclus and the extended nucleolus 

Note that     (  (     ))      (  (   )). Hence, for any allocation scheme  ,  

each component of the vector  ( ) is also a component of  ( ). However,  ( ) has extra 
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components corresponding to the cases    . When the size of the society grows, the number 

of these extra components in  ( ) grows rapidly, and that makes  -monoclus much harder to 

calculate compared to the extended nucleolus in general. However, if the number of agents is 

sufficiently small and/or the game is highly symmetric across partitions of the agents, 

calculation is feasible. Note that for any 2-person game  ( )   ( ), and hence ℳ  ℳ. 

Here, we will analyze the differences and similarities between these two solutions in two 

sets of games. In the 3-person bilateral assignment games they always differ. In a certain subset 

of pessimistic bankruptcy games (see Example 2.4) both solutions coincide. 

Example 2.3: Let  ̅ be the set of 3-person bilateral games as in Section 2.3. For any (   )  

 ̅, wlog  ( )   (   )    ,  (   )    , and  ( )    otherwise, with        . 

The extended nucleolus of the game above is simple to calculate and is as follows: 

ℳ( )  ((     )   (     )    ), ℳ(  )  (           ), ℳ(  )  (           ). 

Note that agent 1’s payoff at game  , and {   } are never the same. Recall from Section 2.3 

that those payoffs should be the same at an absence-proof allocation scheme. Hence, ℳ  and 

ℳ  never coincide on  ̅ . Indeed, by Proposition 2.4, ℳ  can be described by 4 numbers; 

ℳ 
 ( )  ℳ 

 (  )    , ℳ 
 ( )  ℳ 

 (  )    , ℳ 
 (  )    , and ℳ 

 (  )    . 

The  -monoclus is as follows: 

   (      )  ,    (      )  ,               if         . 

   (      )  ,     (     )  ,    (      )  ,    (     )     otherwise. 

Excluding the (     )s with trivially zero  -monotonicities, it is an easy exercise to check that 

the minimum value for the  -monotonicities is attained at the triples (      )and (      ) in 

the first case; (      ), (        ), and (       ) in the second case. 

Example 2.4: (Aumann, and Maschler 1985). A bankruptcy problem is defined by an estate of 

size   to be divided among the claimants, and    denotes the claim of individual  . The 

associated pessimistic bankruptcy game is  ( )      {  ∑          }, for all    . Let 

 ̃ be the set of all such games where       | |. 

We first define the set of coalitions with minimal excess of the nucleolus:  

 ( (   ) )             {   }  ( ( )  ) 

For any (   )   ̃ , we know that  ( (   ))  {{ }    } , and the nucleolus is 

  (   )   ( ) | | for all     (Arin and Iñarra 1998). 

Proposition 2.9: For any (   )   ̃, ℳ ( )  ℳ 
 ( )   ( ) | | for all    , and for all 

   . 

Proof: Proposition trivially holds for the case | |    or | |   . Take any (   )   ̃ with 

| |   . We first show that (   )   ̃ for all    . By construction of  ( ), for any    , 

the subgame (   ) is a pessimistic bankruptcy game associated with     ( ) and the vector 
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{  }   . Consider the subgame     for some    . We know that  (   )         . 

Note that      
  

| |
, then 

   

| |  
 

 (| |  ) 

(| |  )| |
 

  

| |
    for all   (   ) . Hence, (  

   )   ̃. Now, take any    . Remove one agent at a time from   until we finally reach  . 

At each step, the subgame we have is in  ̃ . Therefore, (   )   ̃ , and hence, ℳ ( )  

 ( ) | |. Also, it is apparent from the above inequality that for any     we have  ( ) | |  

 ( ) | |, and also if  ( )   , ℳ ( )  ℳ ( ) for all    .  Hence, ℳ is PM. 

Claim: Take any (     )   . We have     (ℳ (     ))      (ℳ (     ))  

 ( ( )  )   ( ) | |.  

Proof of Claim: Let (     )   . We know that       | | for all    . Then,  ( )    as 

  ∑           for all    . As (   )   ̃ , and   ( (   ))  {{ }    }  we have 

    (ℳ (     ))   (ℳ( )  )   ( ) | |   (ℳ( )  )  for all    ,    . Also, as 

ℳ is PM we have  (ℳ( )  )   (ℳ(   )  )   . 

Let {          } be a partition of    s.t. for any  , and         we have  (  ) |  |  

 ( ) | |, and for any     ,         we have  (  ) |  |   ( ) | | . Note that    

{     ( )   } is non-empty as { }     for all    , and    { } . Also, for every 

(     )    with      we have     (ℳ (     ))   . 

By Claim 1, the minimum value for     (ℳ (     )) with      is attained at (     )  

  with     . Suppose for a contradiction ℳ( )  ℳ ( )  for some     . Then, 

 (ℳ ( )  )   ( ) | | and  (ℳ)    (ℳ ). Again by the Claim, the minimum value for 

    (ℳ (     )) with   (     ) is attained at (     )    with     . Suppose for 

a contradiction ℳ( )  ℳ ( )  for some     . Then,  (ℳ ( )  )   ( ) | |  and 

 (ℳ)    (ℳ ). The argument applies recursively, hence we are done.       

3 Exchange Economies with Private Endowments 

Basic notions In order to get rid of notational complexity, we prefer to define the basic 

concepts and most of the models in words. An exchange economy is formed of a set of 

individuals  , individualized endowments, a feasible consumption space, and preferences of 

the individuals on this consumption space. An allocation is a redistribution of the total 

endowments, possibly with some restrictions on individual consumptions, and a vector of 

balanced monetary transfers (if available in the model). An allocation rule assigns an allocation 

or a set of allocations to all problems in a specified domain.  

Pareto optimality An allocation is Pareto optimal (PO) if there is no other feasible allocation 

that makes an agent strictly better-off without hurting some other agent. 

Core stability An allocation is in the core if for any group of agents there is no way to 

redistribute their total endowment among the group in a way Pareto superior to their allocation. 
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Böhm-Bawerk’s horse market The traded goods are indivisible identical objects (horses 

here). Society is formed of potential sellers and buyers. Sellers own a horse each while the 

buyers own none. Each agent wants to consume at most one horse. Preferences are represented 

by a number corresponding to reservation price for the sellers, and willingness to pay for the 

buyers. Monetary transfers are allowed, and preferences are quasilinear in money. An 

allocation is a redistribution of the horses such that each agent has at most one horse, and a 

vector of transfers that adds up to 0. 

House assignment problem (Shapley and Shubik 1971) The traded goods are indivisible 

identical objects (houses here). Each agent owns exactly one house. For each agent, preferences 

are represented by   numbers corresponding to their willingness to pay for each house. 

Monetary transfers are allowed, and preferences are quasilinear in money. An allocation is a 

redistribution of the houses such that each agent gets exactly one house, and a vector of 

transfers that adds up to 0. 

Housing markets (Shapley and Scarf 1974) The traded goods are indivisible identical objects 

(houses here). Each agent owns exactly one house, and his ordinal preference is a linear order 

over the set of all houses. Monetary transfers are not allowed, and an allocation is a 

redistribution of the houses among the agents. 

Classical exchange economies: An economy is a triple   (     ).     denotes the set 

of individuals, where   is the set of all finite subsets of  .   {  }    is the profile of private 

endowments, where      
  for all  , and    denote the endowment profile restricted to    . 

Each individual has a complete and transitive preference relation    on   
 , and    denotes the 

strict counterpart of   . Let   denote the set of admissible preferences for each individual. 

Given a society    , a preference profile is a vector     , and    is the profile restricted 

to       We denote the restriction of the economy   (     ) to     by    i.e.,    

(       ). Given an economy   (     ), an allocation     
   is a vector s.t.      

  for 

all    , and ∑       ∑      . An allocation rule  ( ) assigns an allocation to each economy 

 .
8
 

3.1 On the core, the competitive equilibrium, and AP 

The competitive equilibrium is without dispute the most fundamental solution concept in 

exchange economies. In most cases it exists, and ensures Pareto optimality. Moreover, for all 

the problems we will discuss here, it is well-known that the competitive allocations are always 

core stable. However, it is not immune to manipulations in all respects. In classical exchange 

economies, an agent can manipulate the competitive equilibrium by withholding or destroying 

his endowment as discussed in Postlewaite (1979). There, Postlewaite also discusses a group 

manipulation strategy. A group of agents may perform a trade prior to coming to the market. 

With their “new” endowments, they can be better off at the allocation the rule assigns. Agents 

                                                           
8
 We prefer defining rules as functions instead of correspondences to keep things simple. 



19 
 

can also manipulate the competitive equilibrium by misrepresenting their preferences (Hurwicz 

1972). 

In a Böhm-Bawerk market, competitive allocations are determined by a set of prices which 

equalizes the number of sellers and buyers that are willing to trade. Here, the set of competitive 

allocations and the core stable allocations coincide. Manipulation by withholding and 

destroying has no bite as each seller owns a single indivisible unit. An active coalition that 

performs pre-trade consists of a subset of both sellers and buyers. This trade will make either 

the sellers or the buyers unhappy, or everyone remains equally happy as there is a uniform 

market price. Also, strategy-proof mechanisms that are immune to manipulation by 

misrepresenting preferences exist (see e.g. Moulin (1995)).   

In this setting, Shapley and Shubik (1971) discuss some weakness of the core. They say, 

“The core is based on what a coalition can do, not what it can prevent”. Here is a summary of 

their argument: There are four suppliers and four buyers. Reservation prices for suppliers in an 

increasing order, and willingness to pay for buyers in a decreasing order are as follows: 2, 3, 4, 

7 for suppliers; 12, 9, 8, 3 for buyers. Here, the competitive price ranges from 4 to 7. If the 

seller with the reservation price of 4 was not involved, the competitive price would range from 

7 to 8. Instead of using his bargaining power in the market directly, by not appearing in the 

scene, he would help increase the bargaining power of the remaining sellers. Below, we take 

their example to an extreme case. 

Example 3.1: (Horse market) There are three potential suppliers with a reservation price of 0, 

and two potential buyers with a willingness to pay of 1. 

The unique competitive price is 0. The buyers get a horse each and pay nothing. Hence, in 

the unique core allocation, buyers equally share the entire surplus of 2 units. If two of the 

suppliers stay outside of the market with their horses, the remaining supplier sells his horse at a 

price of 1 at the unique competitive allocation. As AP implies core stability by the very general 

definition, there is no absence-proof allocation rule here.  

Indeed, the problem in this example induces exactly the same TU cooperative game given in 

Example 2.1; suppliers correspond to workers, and buyers correspond to firms. We argued in 

Section 2.1 that the formulation of manipulation in TU games by the inequality (1) cannot be 

directly applied here. However, as the valuation for the good is exactly the same for each buyer, 

after the allocation process, the manipulating coalition cannot create extra surplus by passing a 

horse from one buyer to another. Hence, the argument that rules out AP in both examples is 

equivalent. The following example reflects exactly the same idea in house assignment 

problems. 

Example 3.2: (House assignment) There are five agents, each endowed with a house. Society is 

partitioned in two distinct sets, say with three agents in set   and two agents in set  . An agent 

from   is willing to pay 1 unit for a house owned by an agent from  , and 0 for a house owned 

by an agent from  . And vice versa for an agent in  . 
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Obviously, the problem above induces the same TU game with the one in Example 2.1, and 

all the “reduced” problems induce the same subgames. Again for this specific problem, 

formulation of AP is the same as in inequality (1). 

Example 3.3: (Auction) There is a single seller who owns a single indivisible object. Assume 

for simplicity his valuation for the good is 0. There are     buyers in the market, and their 

willingness to pay is as follows:           . 

This is a special case of Böhm-Bawerk’s horse market. In a core allocation buyer 1 gets the 

good paying the seller at least   , and other buyers pay nothing. Here, there are a number of 

possibilities for manipulation. We consider just the following trivial case: All the buyers except 

  stays out. Agent   gets the good by paying at most    units. After the trade, he passes the 

good to buyer 1, and buyer 1 pays the others, say   (   )⁄  units. This move makes all the 

buyers strictly better-off. 

There is a similar source of collusion in the auction theory. A manipulating coalition is 

called a “ring”, and members of a ring never bids against each other. If one of the members get 

the object, they would perform an (or a series of) unofficial auction(s) afterwards, and make all 

the members better-off. In the example above, if set of all the buyers forms a ring, none of them 

would bid against agent  , resulting in a similar outcome as we suggested. 

Proposition 3.1: There is no absence-proof allocation rule in Böhm-Bawerk’s horse market, in 

a single seller auction with a single object, and in house assignment problems. 

Postlewatie (1979) showed that in a classical exchange economy, no allocation rule satisfies 

withholding-proofness along with Pareto optimality and individual rationality. Note that any 

core allocation is Pareto optimal and individually rational. In both problems above, AP 

resembles withholding-proofness while the withholding entity is a group rather than an 

individual. Moreover, in Example 3.1, and 3.2 as the manipulating coalition does not utilize the 

goods outside, specific to these examples, the manipulation argument resembles destruction of 

endowments. As AP implies core stability, the impossibility result above is not surprising. 

Group manipulations, as well as the total secession in the core give rise to some transaction 

cost related to the means of agreement. This cost grows with the size of the manipulating 

coalition. In both examples the manipulating coalition consists of only three agents. This 

number is big compared to the size of the society. However, even if the society is formed of 

199 agents, with a 100 of one type and 99 of the other, a coalition of three agents would still 

manipulate with the same argument. 

3.1.1 Housing markets 

Here, there is a unique core allocation if individual preferences are strict. This allocation can 

be implemented by the famous top trading cycle (TTC) algorithm introduced by Shapley and 

Scarf (1974). The TTC algorithm is as follows: Let every agent in   be represented by a node 

in a directed graph. From each agent  , draw a directed link to the agent   who owns the top 

house in  ’s linear order. This will create at least one cycle. Within each cycle perform the trade 
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so that each agent gets his top house. All agents who get their top choice in the first round 

leaves the scene with their new house (unless  ’s top choice is his own house, in that case he 

leaves with his own house). Delete the houses that left the scene from the preference of the 

agents who were not in a cycle in the first round. Now, apply the same procedure among them. 

This algorithm stops in a finite number of rounds, and returns the unique core allocation. 

The direct revelation mechanism through TTC algorithm (henceforth core mechanism) is 

also known to be group strategy-proof; that no coalition can gain by jointly misrepresenting 

their preferences. However, a group of agents can manipulate the core mechanism by 

performing a trade prior to the implementation of the mechanism (see Moulin (1995)). This 

move never makes every agent in the coalition strictly better-off.  

Example 3.4: Consider the following economy where    represents the house that agent   

owns, and     represent agent  ’s preferences. 

         

         

        

        

In the core mechanism, agents 1 and 2 trade houses getting their top choice and agent 3 is 

left out with his own house. If the coalition {   } agrees on agent 2 to stay out, agent 1 gets    

and agent 3 gets    in the core mechanism. Afterwards, agent 3 gives    to agent 2 in return for 

  . This move results in a (weak) Pareto improvement for the coalition {   }. Note that the 

final outcome after the manipulation can also be achieved by a pre-trade between agents 2 and 

3 prior to the implementation of the mechanism. 

Absence-proofness (weak vs. strong) In the absence of monetary transfers, a weak Pareto 

improvement (that not all the agents from the manipulating coalition strictly benefits) is not 

always considered as a true motivation for a group manipulation. One particular reason is that 

agents have preferences over the houses but not on the allocation. Here, we say a rule is 

strongly absence-proof if it is immune to manipulations by weakly Pareto improving moves. If 

manipulation requires a strict Pareto improvement, the corresponding stability concept is weak 

absence-proofness. 

Proposition 3.2: There is no strongly absence-proof allocation rule in housing markets, while 

core mechanism yields the unique weakly absence-proof allocation rule. 

Proof: As AP induces core stability, and there is a unique core allocation at each problem, 

Example 3.4 proves the first statement. Let    denote the set of agents that gets his top house at 

the first round of the TTC mechanism,    denote those who get the “restricted” top choice in 

the second round and so on. Suppose a coalition   is able to make a strict Pareto improvement 

by leaving a subgroup   out. Then,       . As       , agents who get their top 

choice at problem     in the core mechanism is again   . Then, no agent from    can get a 

better house in the absence of  . Given,       , by a similar argument we have      

 , and so on. Uniqueness follows from the fact that there is a unique core allocation.       
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3.1.2 Classical exchange economies 

As we discussed earlier, the competitive equilibrium is proven to be vulnerable to individual 

and group manipulations in many ways in this specific model. Here, the set of competitive 

equilibrium allocations (when it exists) is a strict subset of the set of core allocations. However, 

when the economy is large enough (when the effect of a single agent on the competitive price is 

negligible) the set of competitive allocations converges to the set of core allocations. As 

absence-proofness implies core, our intuition tells that a selection from competitive allocations 

(henceforth Walrasian allocation) is our only hope for an absence-proof allocation rule.  

Definition 3.1: An allocation rule  ( ) is AP on a domain of preferences   if for any economy 

  (     )  with     , for any    , and      , there is no     
(   ) 

 with 

∑     (   )  ∑   ( 
    )    ∑       s.t.   Pareto dominates {  ( )}  (   )  for agents 

in    . 

Remark 3.1: AP implies PO and core stability by definition. Just set    ,     for PO, 

and for all   set     for core stability. 

The following example illustrates that the divisibility of the goods enlarges the manipulation 

options. In an economy with just three individuals and even where all agents have the same fine 

Cobb-Douglas preferences, the Walrasian allocation is manipulable. 

Example 3.5:    ,    , {        }  {(     ) (    ) (     )}.         for all  . 

Check that the Walrasian allocation  ( ) and the induced utilities for the problem   and 

  {   }, with the prices  ( )  (   ) and  ( )  (   ) as follows: 

    ( )   ( )   ( )   ( )   ( )   ( ) 

{     } (      ) (          ) (          ) 112.5 253.125 253.125 

{   } (      ⁄ ) (      ⁄ )       ⁄      ⁄    

Table 3.1 

Note that   ({   })     (       ̅). Consider the following redistribution of this total to 

individuals 1, and 3:    (      ̅), and    (     ). Hence, the Walrasian allocation is 

manipulable by agents 1 and 3 as we have,   (  )    ( ) and   (  )    ( ).  

Example 3.6: There are 11 agents each of whom is endowed with 1 kg of beans and 1 kg of 

rice. All of the agents have linear preferences as follows:           ,            for 

        . 

The unique competitive price in the above economy is (   )  (    ), where   is the price 

of rice. At this price, agent 1 exploits the entire surplus in the market, and the remaining agents 

are left with their initial utility level of 11. Let   {      }, and only     comes to the 

market while agent 1 is always active in the market. Then, the unique competitive price is 

  | |. Hence, all the agents in   has a positive profit from the trade. This profit can be 
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redistributed in a way that makes every agent strictly better-off with respect to their initial 

utility level as the utility is linear. 

Proposition 3.3: On the domain of linear preferences and the Cobb-Douglas preferences, the 

Walrasian allocation rule is not AP. 

Thomson (2013) defines the same manipulating argument, and the corresponding stability 

property withdrawal-proofness, where the manipulating party consists of only two agents. Note 

that withdrawal-proofness is weaker than AP. He proves that the Walrasian allocation is not 

withdrawal-proof on the domain of homothetic preference. So, our results coincide with 

Thomson (2013). 

As almost all other stability arguments, the manipulation argument relies on the perfect 

knowledge of agents about other agents’ characteristics (endowments and preferences) and the 

allocation method. Example 3.6 illustrates an important characteristic of manipulation by 

absence. Note that, there, any subset    of   can manipulate by leaving any strict subset      

out of the allocation process. This suggests that, in some instances, agent’s rough idea about the 

“type” of other agents in the market would be a sufficient motivation to take a manipulating 

action. 

Sertel and Yıldız (1999) discuss the welfare effect of an additional agent that brings new 

trading opportunities on the existing agents. If the allocation rule always assigns core 

allocations, we expect some agents to benefit from the appearance of a newcomer (unless in the 

degenerate case where no existing agent is affected at all). They show that existing agents who 

have “sufficiently similar types” with the entrant are hurt, and the others benefit as their trading 

opportunities expands. Their discussion relies on the fact that the population-monotonicity is 

too demanding in this setting. Hence, we cannot expect all the existing agents to benefit 

regardless of the entrants type. This fact is quite transparent in Example 3.6. Suppose only 

agents 2 and 3 are in the market initially. As they are exactly of the same type no trade occurs. 

If agent 1 arrives in the market, both existing agents would benefit. However, if we add 8 more 

agents (agents 4 to 11), this would hurt agent 2 and 3, while agent 1 benefits from their arrival. 

Just like in TU games, PO and PM implies core stability in this context (see Proposition 3.4 

below). However, as we discuss in Example 3.7 below, the logical relation between AP and PM 

breaks down here. Hence, even the very demanding property PM does not guarantee avoiding 

manipulation by absence. 

Definition 3.2: An allocation rule  ( ) is PM on a domain of preferences   if for any economy 

  (     ) with     , for any     and    , we have   ( )    ( 
 ). 

Proposition 3.4: If  ( ) is PM and PO on a domain of preferences  ,  ( ) is a core selection 

on  . 

Proof: Let  ( ) be PM and PO on  . Take any   (     ) with     , let    , and   be 

an allocation in   . By PO we have,  (  )  is not Pareto dominated by  . As by PM  

  ( )    ( 
 ) for all    , {  ( )}    is not Pareto dominated by   either.       
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Example 3.7:    ,     , {        }  {(     ) (    ) (     )} ,         for all  . 

Consider the following allocation scheme and the induced utilities: 

 

    ( )   ( )   ( )   ( )   ( )   ( ) 

{     } (  √   √ ) (     √       √  ⁄ ) (  √    √  ⁄ ) 100 303.7 225 

{   } (  √    √  ⁄ ) (     √       √  ⁄ )   100 255.4   

{   } (     )   (     ) 100   225 

{   }   (     √  ⁄      √  ⁄ ) (  √  ⁄   √  ⁄ )   276.3 225 

{ } (     )     100     

{ }   (    )     175   

{ }     (     )     225 

Table 3.2 

Note that   is PM, PO and   ({   })     (         ). Consider the redistribution of 

this total to individuals 1 and 3 as    (        )  and    (     ) . We have   (  )  

  ( ),   (  )    ( ), and hence   is not AP. 

4 Fair Division Problems 

Basic Notions A set of individuals     have equal claims on a fixed supply of commonly 

owned goods      where   stands for the consumption space, and   denotes the set of all 

finite subsets of   . For now, we do not impose a structure on   so that we keep our main 

result as general as possible. However, we want the reader to keep in mind that we are dealing 

with the allocation of a bundle of perfectly divisible goods in   
 , or a finite set of indivisible 

objects, or a combination of both. Two important cases we do not include in Theorem 4.1 is the 

fair division of a heterogeneous, and divisible commodity (generally known as cake cutting, or 

land division problem), and the case where we do not necessarily allocate   wholly. Indeed, 

with some further specifications the result will still hold. However, we want to keep the idea 

(and the notation) as simple as possible. A very critical assumption for the manipulation 

argument to be conceptually proper is that consumption is private, and once an agent receives 

the good, he has the complete right to consume or transfer it to another agent. So, we are 

dealing with excludable and rival goods. Moreover, we can safely introduce monetary transfers 

into the model, and say along with the goods, a total amount     of money is distributed. In 

that case   is embedded as a separate component in  . Each individual   in the maximal 

society has a complete and transitive preference relation    on  , and    denotes the strict 

counterpart of   .   denotes the set of admissible preferences for each individual. Given a 

society    , a preference profile is a vector      , and    is the profile restricted 

to    . Then, a fair division model is (     ), and a specific problem is simply a triple 

(     ). We also assume that preferences are strictly increasing in money in case transfers are 

allowed. 
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For a fixed (     ), an allocation   (  )    is a vector s.t. the sum and/or union of the 

total allocated goods is  . Specifically, in the context of indivisible good, no two agents share 

the same good while some agents may receive no good at all. Also, no agent receives a negative 

amount of any divisible good.  (     )  denotes the set of allocations. For each   

 (      ), and      , ∑   ( ) denotes the sum and/or union of goods (and possibly 

money) that the coalition   gets in allocation   at the “reduced” problem (      ) where 

agents in   are the only claimants. An allocation    (     ) is Pareto optimal (PO) if   is 

not Pareto dominated by another allocation i.e., there is no    (     ) such that         for 

all     and        for some    . 

Given a model (     ) , an allocation rule   is a mapping that assigns a subset of 

allocations to each problem (     ). An allocation rule is Pareto optimal if   assigns PO 

allocations to all (     ). 

In case monetary compensations are not available, for any two consumption bundles     in 

the consumption space, we say that     if   is weakly greater in all components, and strictly 

greater in at least one component. Definition is akin to the vector relation in   
 , and if we 

have a set of indivisible objects as a component in   and  , weakly and strictly greater 

corresponds to the set inclusion relations   and  , respectively. Also,     if   is strictly 

greater in all components. When compensations are possible, if two bundles have the same 

transfer, definitions remain the same. If   has strictly more money and   is weakly greater in all 

other components, we say    . 

4.1 On the AP and PM 

In an allocation problem with common endowments, absence of a coalition   in the 

allocation process means that they renounce their claims. Thus, core has no bite here. However, 

the partial secession of  , meaning only a strict     is left out, can still be profitable. In that 

sense, (to my knowledge) absence-proofness is the first core-like stability property in the 

context of fair division (except withdrawal-proofness in Thomson (2013)). 

Definition 4.1: An allocation rule   is manipulable at a problem (     ) by a coalition of 

agents     via absence of    , if there exist    (     ),     (          ), and 

{  }     (  ∑   (   )      ) (a reallocation of what     gets in the allocation    at 

problem (          ) to the agents in  ) s.t.         for all    , and        for some    . 

Definition 4.2: Given a model (     ), an allocation rule   is absence-proof (AP) if it is not 

manipulable at (     ), for any    ,      and    . 

Note that manipulability is defined here in the weak form; existence of one allocation in the 

grand game and one allocation in the reduced game is enough. Thus, AP has the strongest 

possible interpretation. In the examples we provide for our negative results, the allocation rules 

assign single allocations, although they may assign multiple allocations in general (see CEEI in 

Section 4.2). Hence, this strong interpretation does not affect the results here. Moreover, it 

enhances the robustness of AP rules we discuss here in terms of stability. 
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Proposition 4.1: Given (     ), every AP allocation rule is PO. 

Proof: Suppose   is not PO at (     ) , and say    (     )  Pareto dominates   

 (     ). Let    , and fix a    . As ∑   
     , for any     (          ), we 

have    (  ∑   
      ). Then,   is manipulable at (     ) by   via absence of  .       

When agents share a fixed supply of goods, it is natural to ask no one to benefit from arrival 

of additional agents. This is one (strong) interpretation of population-monotonicity as a 

normative solidarity principle. However, in case monetary compensations are available (and 

utilities are quasilinear in money), an additional agent who receives a much higher utility from 

some bundle than all the existing agents may significantly increase the monetary value of the 

pie to be distributed. Then, it is plausible for an existing agent to benefit from the arrival of the 

newcomer. In that case, the solidarity principle asks either no existing agent lose, or no one 

gains. This weaker version appears under different names in the literature; population 

solidarity, weak population-monotonicity, and even sometimes population-monotonicity 

(Moulin 1992; Thomson 1995; Tadenuma and Thomson 1993). 

Definition 4.3: Given a model (     ), an allocation rule   is population-monotonic (PM) if 

for all for all    ;        with     ,      
,    (      ),     (      ), we 

have       
  for all    .   is weakly population-monotonic (wPM), if we have either       

  

for all    , or   
      for all    .   

Note that Proposition 4.1 does not hold if we replace AP with PM. Just consider the case 

    
 , and   (     )    ⁄  for all    .   is obviously PM for   being the domain of 

all monotone preferences
9
, but not PO for many preference profiles. 

Theorem 4.1: Given a model (     ), if a PO allocation rule   is PM, then it is also AP. 

Proof: Fix a model (     ), and let   be PO and PM. Suppose for a contradiction that   is 

not AP. Then, for some (     ),      ,    (     ),     (          ), there 

is {  }     (  ∑   
   (   )   ) s.t.         for all    , and        for some    . By 

PM, for all      , we have   
     . Now, consider the following allocation at problem 

(     )        
  if      , and       if    . Note that    (     ), and it Pareto 

dominates  . This contradicts that   is PO.       

Interestingly, although PM works in the opposite direction in TU surplus sharing games and 

in fair allocation problems, PM implies AP in both problems. In the context of divisible goods 

(    
 ), Thomson (2013) introduces withdrawal-proofness. While the manipulation idea is 

the same as in AP, the manipulating coalition consists of only two agents; corresponding to 

| |   , and | |    in Definition 4.1. Note that this property is weaker than AP. He also 

relates it to PM, but from an opposite direction. He argues that if a coalition   manipulates by 

withdrawal of agent  , then the agent who stays in should not be worse off by departure of   in 

                                                           
9
    on   

  is said to be monotone if for any        
  with      we have      , and if      we 

have      . Moreover, it is strictly monotone if      implies      . 
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the restricted problem. Hence, his welfare should be affected in the manner required by PM. 

This argument is true. However, the critical argument for Theorem 4.1 depends on how the 

agents in     are affected as the resource is fixed.  

Theorem 4.1 provides a sufficient condition to block the possibility of manipulation. 

Finding a simple necessary and sufficient condition for AP is not an easy task in general. 

However, in the very simple model of allocating a single object where monetary transfers are 

available, it is possible (see Section 4.3.1). 

An easier task is to define a sufficient condition for manipulation. Suppose an additional 

agent arrives in the allocation process, and an existing agent   receives no less than what he 

receives before and also more of some divisible good and/or an extra object and/or extra 

money. Then, all the existing agents except   would be willing to compensate the newcomer out 

of their total allocation and ask him to stay out. 

Proposition 4.2: Given a model (     ) , let   be a allocation rule such that for some 

       with     ,    ,    ,      
 where    is monotone (strictly monotone)

10
 

for all     . If for some    (      ),     (      ) we have      
  (     

 ),   is 

not AP. 

Proof: Let        and      { }. Note that      and        . Then, we have 

∑   (  )      
  ( )     ∑     ( ) . By monotonicity (strict monotonicity) of 

preferences,   is manipulable at the problem    by coalition   via absence of  .       

4.2 Perfectly divisible goods with no monetary transfers 

Here, we have     
 , and for a specific problem (     ), an allocation     

   is a 

vector s.t.      
  for all     and ∑        . Three important solutions for the underlying 

problem are competitive equilibrium with equal incomes (CEEI), the  -egalitarian equivalent 

( -EE) allocation proposed by Pazner and Schmeidler (1978), and the sequential priority (SP) 

solution. Given (     ) , CEEI is the set of competitive equilibrium allocations of the 

economy where each individual is initially endowed with    . The  -EE allocation is such 

that each individual is indifferent between his allocation and     for some number  .  -EE 

picks the highest number    such that a corresponding egalitarian equivalent feasible allocation 

exists, and assigns one of those allocations among which all the individuals are indifferent. On 

the domain of strictly monotonic and continuous preferences  -EE allocation is well-defined 

and PO. A nice feature of the  -EE allocation is that on that domain, it is PM (see e.g. Moulin 

(1995)), while CEEI is not (Chichilnisky and Thomson 1987). 

Unlike the other two solutions, the SP solution is not anonymous. Given a society  , fix a 

strict priority ordering of the agents in  . Then, at each problem (     ) with    , just 

assign   to the agent in   who precedes others in the order. Given a maximal society  , and an 

order on  , the solution is well-defined for each problem at a subsociety    , and only at 

those     Hence, it resembles the allocation schemes in Section 2. Note that on any domain of 

                                                           
10

 Standard adaptations of these properties in consumption space   
  to  . See footnote 8.  
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preferences this solution is trivially PM. However, it may not be efficient on the domain of 

monotone preferences. Just consider the case where the first agent in the order is indifferent 

between any two bundles in   
 . Moreover, if the second agent in that order has a strictly 

monotonic preference, these two agents can manipulate SP by the absence of the first agent. 

Note that on the domain of strictly monotone preferences, the SP solution is also PO. 

Corollary to Theorem 4.1:  

(i) The  -EE allocation rule is AP on the domain of continuous and strictly monotonic 

preferences.  

(ii) The SP solution is AP on the domain of strictly monotonic preferences. 

As in exchange economies, competitive idea is vulnerable to manipulation by absence. The 

following example is used to show that the CEEI is not PM on the domain of strictly monotonic 

preferences by Chichilnisky and Thomson (1987). 

Example 4.1: Let    ,   (     ), | |    

      {      }        {               } for          

The CEEI gives (    ) to agent 1 at game  , and (    ) at game {     }. Note that agent   

gets less in each good when agent   leaves the game.  

Corollary to Proposition 4.2: CEEI is not AP on the domain of continuous and strictly 

monotonic preferences. 

If everyone has an equal right on the common endowment, it is fair to give them an equal 

share, but that is not efficient in general. If we assume that individuals seek for welfare 

improving trade opportunities, they would end up in a competitive equilibrium of the economy 

where the initial endowment of each individual is   ⁄ . Indeed, the CEEI is the summary of 

this process. Although CEEI is not AP in general, it is less vulnerable to manipulation 

compared to the competitive allocation in exchange economies. We adapt the story in Example 

3.6 to a fair division problem. 

Example 4.2: An individual is planning to give away a total of 11 kgs of beans and 11 kgs of 

rice as a food aid. There are 11 potential poor individuals in his neighborhood. The donor 

announces to these people that he will divide the total among those who appear at his door at a 

certain time, truly assuming that they will trade afterwards. Beans and rice are necessity for 

these people, and hence substitutes. Agent 1 prefers beans and the other 10 agents prefer rice. 

Assume wlog that           ,            for         . 

Recall from Section 3 that if all agents appear at the door, in the final CEEI outcome, agent 

1 gets 11 kgs of beans with a utility level of 110, and all the other receive 1.1 kg of rice each 

with a utility level of 11. If only     {      } appears, each agent in   receives  | |⁄ , 

and hence no group of agents is able to compensate the loss of agent 1 due to his absence. If 

agent 1 and     appear, it is easy to check that agent 1 receives 11 kgs of beans and the 

remaining agents get   | |⁄  kgs of rice. Apparently, no group has a motivation for 
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manipulation in this case too. Here, the CEEI outcome is easy to implement for the donor, 

efficient and immune to manipulation by absence of some agents. 

A plausible rule, well-defined on all finite societies, that is AP but not PM is yet to be 

explored. However, if we have a maximal society and we adopt allocation schemes as a 

solution concept, AP solutions violating PM exist. The definition of allocation schemes here is 

parallel to the one in Section 2.1 i.e., given a problem (     ), an allocation scheme assigns 

an allocation  ( )    
   for any problem (      ) with      The allocation scheme   in 

Table 4.1 is AP, but not PM. 

Example 4.3: Consider the story in Example 4.2 where the parameters and the preferences are 

as follows:    ,   (   ), | |   .  

      {           }        {           },       

    ( )   ( )   ( ) 

{     } (       ) (       ) (   ) 

{   } (   ) (   )   

{   } (   )   (   ) 

{   }   (   ) (   ) 

Table 4.1 

It is easy to check that  ( ) is PO at each  . As   (   )    (   ),   is not PM. To see that 

  is not manipulable by   {   } via absence of 1, note that agent 2 gets   ({   })  (   ). 

Then, agent 1 can get a maximum of    unit of utility in any redistribution of (   ) among 

agents 1 and 2, while agent   already gets 15.5 unit of utility at problem  . The argument is 

similar for the absence of agent  . Agent   will form a coalition with neither agent 1 nor agent 

2 as in any case (   ) or (   ) will be redistributed among the manipulating coalition, and 

agent   gets at most   units of utility while he gets 4 units at the problem  . Hence,   is AP  

4.3 Models with monetary transfers 

In models with quasilinear utilities and monetary transfers, for each problem (     ) there 

is an associated stand-alone TU game defined by the characteristic function  ( )  

   {∑   (  )        (      )}. This game is not directly useful in AP analysis as we 

discussed in Section 2.1. However, it is useful to find PM solutions. Moulin (1990b) proved 

that PM is not compatible with PO in general, in the allocation of a perfectly divisible bundle of 

goods from    
  (for    ). A similar impossibility was established in Beviá (1996) in the 

context of indivisible goods where an agent is allowed to receive more than one good. 

However, introducing a substitutability
11

 axiom on the individual preferences and the “joint 

preference”, Moulin (1992) in the context of divisible goods, and Beviá (1996) in the context of 

indivisible goods showed that the associated TU game is concave. Hence, the Shapley solution 

                                                           
11

 In perfectly divisible case, two goods  , and   are substitutes in the utility function   if marginal utility 

from consuming good   decreases by an increase in the consumption of good  . The idea is similar for 

the indivisible case.  
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is PM by Sprumont (1990). Here, the Shapley solution is simply the set of allocations that yield 

the final utilities equal to the Shapley value of the stand-alone game. Moulin’s result is indeed a 

bit more general, and also implies that in case of allocating finite objects where each agent 

receives at most one object (a special case is allocating a single object with monetary transfers), 

Shapley solution is also PM. In that case if | |  | |, Theorem 4.1 does not immediately imply 

that the Shapley solution is AP. However, with some little adjustments it does capture this case 

also. 

Open question 2: Is there an AP rule in the general contexts studied in Moulin (1990b) and 

Beviá (1996)? 

For the special case of distributing two objects (where an agent can get both) Doğan (2013b) 

shows that on the domain of monotone preferences, PM (and hence AP) solutions always exist. 

In particular, a hybrid Shapley solution is PM. 

The case of single object is equivalent to the well-known airport problems (cost sharing) 

and this problem admits several interesting population monotonic solutions including the 

Shapley value, nucleolus and the Dutta-Ray solution of the associated game (see Thomson 

(2007) for a survey).  

Stating the corollaries to Theorem 4.1, we turn back to our primary question: to understand 

the difference between AP and PM. The difference between the two properties is not obvious in 

general. However, in the simple model of allocating a single indivisible object, we give a 

compact characterization of AP rules. This characterization makes it easy to read if a rule is AP 

or not, moreover it makes the difference between the two properties clearly visible. 

4.3.1 A single indivisible object   

A single object is to be distributed to a set of individuals  . A well-known example is an 

inheritance problem where an estate is to be assigned to one of the heirs, and monetary transfers 

are available to compensate the ones who do not get the object. For simplicity we take     

(our results still hold for     with minor adjustments). The value of the object for each 

individual   is     , and a problem is a tuple (   ) with   {  }   . A solution to the 

problem (   ) is a tuple {(     )}    , where      for those who do not get the object at the 

solution, and if   gets the object     . Also,    represents the monetary transfer with 

∑        . Agents preferences are quasilinear in money, i.e.,   (     )          for all 

   . Given a problem (   )  and a subset    , (    )  denotes the restricted problem 

where   
     for all    , and  ̅          .  

As we already discussed, individual rationality (IR: that each agent ends up with a non-

negative utility) is conceptually a requirement for AP, and PO is a consequence of AP. At a 

solution satisfying both properties, an agent   with     ̅  gets the object and compensate the 

others with monetary transfers such that      for all     and     ̅  ∑          . 

Therefore, such a solution induces a unique set of numbers {  }    with      and ∑       

 ̅ . Conversely, any such set of numbers represents a set of PO and IR solutions among which 

all individuals are indifferent, and a single solution if there is only one   with     ̅ .  
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An allocation rule   assigns a solution to each problem (   ). Given a problem (   ) and 

an allocation rule, {(  ( )   ( ))}        denotes the solutions that the allocation rule assigns 

to problem (    ) for all    , {  ( )}        denotes the induced final utilities. 

The main difficulty in analyzing absence-proofness is the complexity of reallocation 

opportunities after the allocation process. In this model however, the most beneficial 

reallocation is simple. If the agents from the manipulating coalition who stays in the problem 

do not receive the object, all we need to know is the total transfer they receive. If one of them, 

say agent  , receives the object in the sub-problem, the best he can do is to pass the object to an 

agent, say agent  , with the highest valuation among the agents that stay out, and that is in case 

     . 

Proposition 4.3: Let   be an allocation rule that induces {(  ( )   ( ))}       , and 

{  ( )}        at problem (   ). Then, the following are equivalent; 

(i)   is AP at (   ). 

(ii)   is PO at (   ), and also, if | |   ;       we have; 

          ( )    ( ) if   ( )   , and   ( )    ( )   ̅    ̅   if   ( )   . 

Proof: 

(i) ⇒ (ii): By Proposition 4.1   is PO. Suppose for a contradiction for some     with   ( )  

  we have   ( )    ( ), or   ( )    and we have   ( )    ( )   ̅    ̅  . There are 

four cases depending on whether   ( )   , or   ( )   . In each case it is easy to check 

that     can manipulate   by absence of    .    

(ii) ⇒ (i): Take any      , let     with   ( )    and (ii) hold. We need to show that 

  (   ) does not Pareto improve upon its allocation by leaving     out of the problem. 

Consider first the case that    . Then,       has only the transfers but not the object if 

    leaves, and the total money to be redistributed is  ̅   ∑   ( )      . By (ii),  ̅   

∑   ( )  (   )     ( )   ̅   ∑   ( )  (   )     ( )  ∑   ( )  (  (   )) . 

Now, consider the case    . The total utility of   in problem (    ) is  ̅   ∑   ( )     . 

Note that by a redistribution of the transfers and the object   (   ) can increase this total 

utility by a maximum of  ̅    ̅  , and this maximum is reached if there is       with 

    ̅ . By (ii),  ̅    ̅    ̅   ∑   ( )        ̅   ∑   ( )      ∑   ( )  (     ) .     

  

Proposition 4.3 makes the difference between AP and PM very clear. PM requires that when 

a group of agents leave, the utility of none of the agents should decrease. AP, however, allows 

in such a case, the utility of only one individual (the one who gets the object in the sub-

problem) to decrease, and the upper-bound in the change of the utility of this agent is  ̅    ̅  . 

The interesting exercise here is to find out solutions that are AP but not PM. The following 

solution    ( ) (serial oligarchy) is an allocation scheme rather than an allocation rule. It is 

well-defined on a fixed maximal society and all the sub-problems. 
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Definition 4.4: Fix a maximal society  , and define a linear order on  . Given a problem 

(   ); for any problem (    ), assign the object to individual   s.t.   is the first in the order 

with     ̅ . In the reduced profile     , pick the  individual    s.t.    is the first in the order 

with      ̅   . Then, distribute  ̅  equally among this two agents, i.e.   
   (    ̅   ), 

    
   (   ̅   ), and   

   (   ) for all     {    }. 

Note that the fixed order serves in breaking ties. It is relevant only if there are at least two 

agents with the highest valuation in the profile, or there is a single agent with the highest 

valuation, and there are at least two individuals with the second highest valuation. 

Proposition 4.4: Given a maximal society  , and a linear order on  , the associated serial 

oligarchy rule    ( ) is AP, but not PM. 

Proof: Let | |   , and (        )  (      ). Regardless of the fixed order, final utilities 

for agent 2 induced by    ( ) are   ( )   , and   ({   })   . Hence,    ( ) is not PM. 

Now, fix a maximal society  , a linear order on  , a problem (    ), and suppose a group of 

individuals leave. In the reduced problem, say   , the utility of only the agent   who gets the 

object in    may decrease by definition of    ( ) regardless of the order. That happens only in 

case   does not get the object, but receives a transfer in problem  . In that case, the decrease in 

his utility is ( ̅   ̅  
)  . Hence, by Proposition 4.3,    ( ) is AP.       

A simple but very compelling fairness property is equal treatment of equals (ETE). A 

solution that satisfies ETE does not discriminate the agents with the same valuation, i.e., for 

any problem (   ) the final utilities induced by the rule satisfy   (   )    (   ) for any 

      with      . PO dictates the assignment of the object to and agent with the highest 

valuation. In case there are several such agents, this assignment is critical to analyze AP. If in 

addition to IR and PO we impose ETE, all we need to know is the final utilities of the agents to 

check for AP. Hence, we can now use utility distributions as a solution object, which by 

definition satisfies PO and IR. All the following results hold for single-valued allocation rules 

that satisfy ETE. 

Definition 4.5: A utility distribution  ( ) is a mapping from the set of all problems to   
  s.t. 

for each (   ), ∑   (   )     ̅  . 

Proposition 4.5: Let  ( ) be a utility distribution that satisfies ETE. Fix a problem (   ), and 

order the individuals s.t.           . Suppose we add agent   to the problem. In case 

        or      ,  AP dictates utility of the pre-existing agents not to increase. In case 

          , AP dictates utility of only agent   can increase, and the maximum increase in 

his utility is      . Moreover, these are sufficient conditions for  ( ) (any allocation rule   

that yields the same final utlilities with  ( )) to satisfy AP. 

Proof: Necessity of the conditions directly follows from Proposition 4.3 and ETE. To see the 

sufficiency, take a problem (   ), a subproblem (    ), and suppose the conditions above 

hold. In case  ̅   ̅ , the condition ii. in Proposition 4.3 trivially holds. In case  ̅   ̅ , add 
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agents in     recursively to the problem (    ), starting with some     with     ̅ . It is 

easy to see that condition ii. holds here too.       

One of the main themes in the fair division literature is the compatibility of the 

monotonicity properties with different fairness criteria. Alkan (1994) showed that envy-freeness 

(EF) is not compatible with PM. Tadenuma and Thomson (1993) replaced PM with wPM and 

proposed a rule that satisfy both wPM, and EF. It corresponds to equal division of  ̅  at each 

problem here, i.e.   (   )   ̅  ⁄ , for all    . To see that this rule is not AP, consider the 

problem (   )  with    , (        )  (     ) . Note that each agent gets   at problem 

(   ), while at problem (    ) with   {   } each agent gets  . 

Remark 4.1: wPM does not imply AP. 

Definition 4.6: A solution {(     )}    to the problem (   ) is envy-free (EF) if for all     

 ,   (     )    (     ). An allocation rule   is EF if it assigns an EF solution to all problems 

(   ). 

Envy-freeness is a pretty strong condition, especially in this model. It is well-known that EF 

implies PO (see for example Tadenuma and Thomson (1993)). To derive our next result, it 

suffices to know two simple properties that EF implies. One of them is ETE, and the second is 

that any EF allocation assigns an equal share of transfers to those who do not get the object. 

Both properties follow immediately from Definition 4.6. 

Proposition 4.6: There is no allocation rule that satisfy both EF and AP. 

Proof: Let   be EF, and consider the problem (   )  with     and (           )  

(         ). The unique EF allocation induces the utilities   ( )    for all    , and the 

unique EF allocation induces the utilities   ( )    at problem (    ) for   {   }, and for 

all    . As one of the agents does not get the object at problem  , by Proposition 4.3   is not 

AP.       

Moulin (1990b) showed that the key property that causes the incompatibility of PM and EF 

is the free access upper bound (FAU). PM implies FAU, which simply says that the final utility 

of an agent should be less than his valuation, i.e.   (   )    . A stronger property that PM 

implies is that   is in the stand-alone core (SAC): no coalition   in total can get more than what 

they get in problem (    ), i.e  ∑   (   )     ̅ . Now, order individuals s.t.       

    . Then, in particular, SAC implies ∑   (   )   
     . We now introduce a similar 

necessary condition for AP.  

Proposition 4.7: Fix a utility distribution  ( ) that satisfies ETE, and a problem (   ). Order 

the individuals s.t.           . If   is AP, then  ( ) satisfies the following: 

 ∑   (   )   
        for all       (9) 

Proof: Let everything be given as in the statement of the proposition. As   ( )    for all 

   , we have the desired inequality for      . Let      , and suppose for a 
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contradiction that ∑   (   )   
       . Let   {         }, consider the problem (    ).  

Note that ∑   (   
 )        . By Proposition 4.5, we have   (   )    (   

 )  for all 

  {     }. Then,     (   
 )   .       

Now, using the condition (9), we will construct a utility distribution that is AP, but not PM 

(not even wPM). To avoid notational complexity, we will just introduce and explain it on an 

example first of all to make it easy to read, and also to explain our choice of distribution when 

there are several agents with the same valuation. We see below that this choice is critical. 

Example 4.4: Let    , (       )  (                   ). 

Our utility distribution  ̃ is as follows: Start by assigning the agent with lowest valuation, 

his value, i.e.  ̃   . Continue with agent 2. If his valuation plus  ̃  does not exceed    (so 

that (9) is not violated) assign his valuation to agent 2,  ̃   . Now, note that  ̃   ̃     

exceeds    , so we give agent 3 the maximum share that does not violate (9),  ̃   . It is safe 

to assign his valuation to agent 4 as ∑  ̃  
 
          , hence  ̃   . Assigning 5, 6 and 7 

equal shares without violating AP is critical. Note that ∑  ̃  
 
       and applying the 

argument we used up to now yields 1.5 for each of these agents. If each gets this share, (9) is 

not violated and this is the maximum each can get (check (9) for    ). But suppose we do not 

have agent 8 initially. Then, agents 5, 6 and 7 gets a share of (     )  ⁄    in the problem 

(  { }    { }) . When agent 8 appears and if we give them 1.5 each, share of 3 of these 

agents increase and this violates AP as only one of them gets the object in the problem without 

agent 8. Therefore, what we do here is to give first 7 agents a total of 15 instead of 18. Hence, 

 ̃   ̃   ̃   . We can generalize this idea as follows: Suppose we have         

           , and our procedure has already assigned { ̃ }     . Then,  ̃    ̃      

(   ∑  ̃  
   
   )  . We give the remains to agent 8,  ̃   . Note that had the vector of 

valuations be (      ), we would assign the first two agents 1 each and continue. 

Proposition 4.8:  ̃ is AP, and is neither wPM nor in the SAC. 

Proof: To see that  ̃ is AP, take a problem (   ), and order the individuals s.t.       

    . Consider first adding an agent   to the problem with     ̅   and suppose       

     . This will not change the share of any agent except that of agents   and    , while the 

share of these agents would possibly decrease but not increase. If      , this will not affect 

the share of agents whose valuation is not equal to    , and the share of all agents whose 

valuation is equal to    decreases. Now, suppose     ̅  . This would possibly affect the share 

of agents with valuation  ̅   only and not the others. If there is more than one agent with 

valuation equal to  ̅   their share do not change either. Let          , and note that   agents 

already get a total of  ̅   in problem (   ). After   arrives, applying (9) for    , the share of 

agent   can increase by at most     ̅  . Then, Proposition 4.5 implies that  ̃ is AP. 
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 ̃ is clearly not in the SAC. In order to see that  ̃ is not wPM, consider the following 

problem (   ) with    , (       )  (          ). We have  ̃(   )  (         ). Now, 

let   {     }. We have  ̃ ( )   ,  ̃ ( )   , and  ̃ ( )    at the problem (    ).       

Remark 4.2: By Remark 4.1 and Proposition 4.8, AP and wPM are independent properties. 

  

 

 

Appendix 

Proof of Proposition 2.4: Necessity. Let   be an APAS. As it is a core selection (hence 

efficient at each  ), and (     )  is an optimal pair at game  , by Lemma 2.1, we have 

  ( )    ( )    ,   ( )   , and also   ( )    ( )    ( )    . Also, by 

Lemma 2.2,   ( )    (   ) and   ( )    (   ). Suppose   (   )    ( ). Then,    

and    would be better off by absence of    at game  . 

Sufficiency. Here, the only critical agent is   . {     } would not be better off if    leaves as 

they would get at most   , while they get together    at game  . {     } would not be better 

off if    leaves as   ( )    (   ).       

Proof of Proposition 2.6: Necessity. Let   be an APAS. To see          holds in Case 1, 

note that by Proposition 2.4 applied to game {     } we have,   (   )    ; and applied to 

game {     } we have,   (   )    . Then by efficiency of  ,   (   )    (   )      

     . The argument for Case 2.1 ( ) is similar. To see           holds in Case 1, note 

that by Proposition 2.4 applied to game {     } we have,   (     )    , and hence    

     (     )    (   ) . By the same argument for game {     }  we have,       

  (   ). Then, by efficiency,                  (   )    (   ). The argument 

for Case 2.1 (  ) is similar. To see          holds in Case 2.2, note that applying Prop. 2.4 

to game {     } we have   (   )    ; and applying it to {     } we have,   (     )    . 

Therefore,         (     ) and   (     )   . If         , then    and    would be 

better off by absence of    at game {     }. Argument is similar for Case 2.2 (  ).       

Sufficiency. We will show that the allocation scheme defined in Table 2.1 is an APAS, and then 

define allocation schemes for Case 2.1, and Case 2.2 in Table A.1, and Table A.2, respectively. 

Proof for those is similar to Case 1, so we omit it. Note that for all subgames that do not appear 

at the tables  ( )   . The optimal assignments (not necessarily unique) at game   are 

((     ) (     )) in Case 1 and 2.2, and ((     ) (     )) in Case 2.1. Check that  ( ) is 

efficient at every subgame     in all cases. For all  -person subgames efficiency and that 

 ( )    for all   implies   is not manipulable. For 3-person subgames we use Proposition 2.4 

to show absence-proofness. We will use the Claim 1 below to prove that   is not manipualble 
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at game  . Now, fix an allocation scheme   on (   ),     and define the set of agents in   

whose payoff decrease at game   w.r.t game   as  (     )  {      ( )    ( )}. We 

say   is monotone from   to   if the set  (     ) is empty. 

Claim 1: Let  ( ) be a core allocation.   is manipulable by absence of     at game   if 

and only if   is not monotone from   to   and  (     )      manipulates   at game   

by absence of    . 

Proof of Claim 1: Let  ( ) be a core allocation, and  (     ) be empty. Then, for any 

      we have, ∑       ( )  ∑       ( ), also as  ( )   (   ), we have  (   )  

∑        ( )  Hence, (1) holds for     (      )   . Now, let  (     )  be 

nonempty, and      s.t.        manipulates   at game   by absence of    . Then, we 

have ∑ (  ( )    ( ))     ∑        ( )   (   ). Note that the expression on the left 

hand side of the inequality is maximized by     (     ).       

Case 1: To see that   in Table 2.1 is an APAS at game {     }, check that    (     )  

  (   )           by condition ( ),   (     )   , and   (   )    (     )     

       (   ) . To see that   is an APAS at game {     } , check that    (     )  

  (   )           by condition ( ),   (     )   , and   (   )    (     )     

       (   ) . To see that   is an APAS at game {     } , check that   (     )  

  (   )    ,   (     )   , and also   (   )    (     )           {   

      ⁄ }    (   ). To see that   is an APAS at game {     } check that    (     )  

  (   )    ,   (     )   . Also, in case             we have,   (   )  

  (     )               (   ) , and otherwise   (   )    (     )        

         (   ) by condition (  ). 

To see   is not manipulable at game  , first note that by Lemma 2.1,  ( ) is in the core of 

game   as   ( )    ( )           by condition ( ),   ( )    ( )    , and the 

optimal pairs get the exact surplus they create. Check that   is monotone from any   to   as 

by ( ) we have                 . Then, by Claim 1 we are done.       

    ( )   ( )   ( )   ( ) 

{       }    {          }            ( )    

{     }              

{     }              

{     }              

{     }              

{   }    {          }        (   )   

{   }              

{   }              

{   }              

Table 2.2 
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    ( )   ( )   ( )   ( ) 

{       }                   

{     }              

{     }       0      

{     }              

{     }              

{   }    {          }        (   )   

{   }              

{   }              

{   }              

Table 2.3 
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