
1 
 

 

Strongly Stable and Responsive Cost Sharing Solutions for 

Minimum Cost Spanning Tree Problems
1
 

Emre Doğan
2
 

October 14, 2013 

 

Abstract 

On the cost sharing solutions to a minimum cost sharing problem, we define a 

strong stability property absence-proofness that implies stand alone core stability. 

We show that the well-known Bird and Dutta Kar solutions fail this property as 

well as all non-separable solutions while all population monotonic solutions are 

strongly stable. We also propose a family of strongly stable solutions that are easy 

to compute and more responsive than the well-known folk solution to the 

asymmetries in the cost data. 
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1 Introduction 

We consider a minimum cost spanning tree (mcst) problem where agents need to be 

connected to a source, and there is a fixed cost of the links connecting any two agents and any 

agent to the source. Agents do not care through which links they are connected. Then, to connect 

all agents to the source, efficiency requires that the links used in the connection form a spanning 

tree. Such a tree with the minimal cost (a mcst) can be constructed and its cost can be calculated 

by Prim’s algorithm (see Section 2 for details).  

Many authors proposed several interesting solutions to distribute the efficient cost. Bird 

solution (B) (Bird 1976) and Dutta Kar solution (DK) (Dutta and Kar 2004) are among those. 

These solutions have been criticized as they lack many desired fairness criteria.
3
 However, both 
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solutions satisfy the stand alone core stability, i.e., no group of agents has an incentive to secede 

from cooperation and construct their own connection to the source. Moreover, they are very easy 

to calculate when there is a unique mcst. 

Özsoy (2006) introduced a manipulation idea by merging. A group of agents   leave the 

scene and covertly connect the source through another agent  , hiding their existence from     

except  . If the minimal connection cost of   to agent   plus  ’s cost share at solution   at the 

reduced problem     is less than the total cost share of     at the solution   at the original 

problem,   is said to be manipulable by covertly merging. She defined the related stability 

property covert-merge-proofness and showed that no solution is stable in that sense. Here, we 

define a similar manipulation idea, and the corresponding stability property absence-proofness. 

Consider the following problem where the set of agents is   {     } and   is the source: 

 

 

 

 

 

 

 

 

Fig 1 

Note that the unique mcst is {(   )(   )(   )}. The Bird solution and the Dutta Kar solution 

yield the cost allocation vectors  ( )  (     ), and   ( )  (     )4
. Suppose now agent 3 

leaves or had never appeared in the first place. Then, the solutions yield  ({   })  (      ), 

and   ({   })  (      ) at the reduced problem where only agent 1 and 2 cooperates to 

connect to the source. Note that the individual connection cost to the source for agent 3 is 9. 

Consider first the Bird solution. If agents 2 and 3 agree to keep agent 3 away from the scene, 

they can connect to the source at a total cost of       , while their total cost share is 12 had 

3 not been left aside. A similar argument holds for agents 1 and 3 for the Dutta Kar solution. 

Hence, both solutions are manipulable by the group of agents {   } and {   }, respectively, via 

absence of agent 3. 

Doğan (2013) defines the above manipulation argument in various contexts. Here, the general 

idea is as follows: A solution   is manipulable by     via absence of     at a problem if 

the total cost share of   at   is more than  ’s own connection cost plus the total cost share of 

    at  , at the reduced problem    . If a solution is not manipulable at any problem we call 

it absence-proof. Absence-proofness (AP) implies core stability by definition; just set    . 

Our first critique is against the solutions that fails separability (SEP). Suppose two groups of 

agents   and   decide to connect to the source jointly. In case there is no cost saving, i.e. own 
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connection cost of   plus own connection cost of   is equal to the efficient connection cost of 

   , cost shares of agents should remain the same. Any solution that violates SEP also violates 

AP (see Proposition 2). 

Our main contribution, by a very simple argument, is that all population monotonic solutions 

satisfy AP. Population monotonicity (PM) requires that no one should pay more when additional 

agents arrive. Note that if PM holds, cost share of     do not decrease when   leaves. Again by 

the same argument,  ’s own connection cost is no less than ∑   ( ) .Therefore, PM implies AP. 

Several population monotonic, and hence absence-proof, solutions are defined in this context 

(Feltkamp et al. 1994; Norde et al. 2001; Brânzei et al. 2004; Tijs et al. 2006; Bergantiños and 

Vidal-Puga 2007; Bergantiños and Lorenzo-Freire 2008; Bogomolania and Moulin 2010; 

Bergantiños and Vidal-Puga 2012). Among them, the celebrated (as many calls it) folk solution 

singles out, satisfying compelling fairness properties such as continuity, cost monotonicity and 

ranking (see e.g. Bogomolnaia and Moulin (2010)). It is also known as equal remaining 

obligation solution (Feltkamp et al. 1994) or P-value (Brânzei et al. 2004). 

Bogomolania and Moulin (2010) criticized the folk solution as in some instances where the 

cost data strongly suggest that an agent should receive a strictly less cost share from another, it 

treats the agents equally. Now, write     for the cost of connecting agents  ,  , and     for the cost 

of connecting   to the source  . Consider the following problem with   agents: 

          for all  ;              for all      ;             for all                            (1) 

Bogomolnaia and Moulin (2010) discussed the case      ,     . Note that in the absence 

of agent 1, the efficient cost of connecting the other agents to the source is 18, and agent 1 comes 

with 8 units of overall cost saving where the mcst is a star and agent 1 is at the central position. 

Folk solution is reductionist in the sense that it does not take the cost of the links that do not 

appear in a mcst into account, and yields 1 unit of cost share to each agent. Bogomolnaia and 

Moulin (2010) asks agent 1 to receive a strictly less cost share than to that of others in this case, 

and formulate the related property strict ranking 1. They defined another strict ranking property 

and a strict cost monotonicity property, and proposed a family of solutions that satisfy all those, 

together with the basic fairness properties; continuity, cost monotonicity and ranking, except PM. 

There, whether all these properties are compatible with PM or not is left as an open question.  

Norde (2013) is the first to respond this question and proposed the cost adjusted folk solution 

(CAF) meeting all the properties mentioned above. CAF yields cost allocations very close to the 

folk solution. In particular, each agent receives a cost share between 97 and 103 percent of his 

cost share at the folk solution. Moreover, this interval shrinks rapidly as the number of agents   

increase. Consider the problem in (1) where          . Note that agent 1 brings 800 units of 

cost saving (decreasing the efficient cost from 900 to 100 units). It is natural to ask from a fair 

allocation to significantly discriminate the cost shares of agent 1 from that of others. One may 

even argue that agent 1 should receive a negative cost share (a subsidy) (see Trudeau (2012)). 

However, we follow Bogomolnaia and Moulin (2010), and restrict ourselves to nonnegative cost 

shares. The CAF solution yields approximately a cost share of 9.96 for agent 1 and 10.004 for 

others while the folk solution yields a 10 unit share to each agent.  
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In this work, we do not impose any normative principle about how much the solution should 

favor agent 1 in the above example. Instead, we define a family of solutions which on the one 

end yields (almost) 10 units to each agent at the above problem and on the other end (almost) 0 

to agent 1, depending on a continuous parameter. Moreover, this family carries all the fairness 

properties Bogomolania and Moulin (2010) asked for, except PM. However, it meets the weaker 

but more compelling stability property, absence-proofness. 

In Section 2 and 3, we give the setting; define basic properties and solutions, respectively. In 

section 4 we define absence-proofness, give an alternative interpretation of AP, and show that 

PM implies AP, and AP implies SEP. In Section 5, we define partial solutions on the elementary 

cost vectors where cost of the links are either 0 or 1, and the extension of these solutions on 

general cost vectors. We show that for any partial solution satisfying independence of irrelevant 

components, the extended solution is absence proof, and then propose a family of solutions as an 

alternative to the folk solution. 

2 The Setting 

Let   {     } be the set of agents and   donote the source to which agents need to get 

connected. There is a nonnegative cost to connect each agent     to the source and to the other 

agents which is denoted by     for     { }   . Let (  { })( ) denote the set of all non-

ordered pairs     in set   { }. Therefore, a msct problem is a triple (     ), where   

(   )   (  { })( )    and   denotes the set of all cost vectors for   { }. We omit   as it is 

fixed and simply speak of the problem (   ). The reduced problem for a subset     of agents 

is denoted by (    ), where    (   )   (  { })( ). By abuse of notation we will use (   ) when 

we speak of a subporblem.  

Given a problem (   ), an edge       represents a connection between       { } with 

the cost       . A spanning tree   is a non-directed graph with   edges that connects all the 

elements in   { } and the cost of   is  ( )  ∑      . 

The minimal cost of connecting   agents to the source is  (   )        (   )  ( ), where 

 (   ) denotes the set of all spanning trees, and can be computed by Prim’s algorithm (Prim 

1957): At the first step, among the edges that connect agents to the source, pick an edge     with 

the cheapest cost, and say   is connected to the source. At the second step, pick an edge     with 

the minimum cost, where   {   } and      , and say   is connected to the source. At each 

step, continue to connect a new agent to the agents that are connected in the previous steps or to 

the source directly using the same method. This procedure ends in   steps and returns a mcst. 

Note that this procedure might not return a unique tree. 

A cost allocation at problem (   ) is a vector     
  such that ∑        (   ) and a 

solution   specifies a cost allocation for each problem. Note that we restrict ourselves to 

nonnegative cost shares while negative cost shares may be reasonable for some instances (see 

Trudeau (2012), Kar (2002)). 
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3 Basic properties and solutions 

In this context, there are two interpretations of the most fundamental incentive compatibility 

property, stand alone core stability. Strict stand alone cost of a coalition     ( (    )) is the 

minimal cost of connecting all agents in   to the source using only the links in   { }. Stand 

alone cost of   ( ̅(   )) is the minimal cost of connecting agents in   to the source using links in 

  { }. The nature of the problem determines the right choice between two cost sharing game 

  and  ̅. If we are interested in only core stability, this choice is irrelevant as under the 

assumption of nonnegative cost shares, both games yield the same set of core allocations (see e.g. 

Sharkey (1995)). However, this choice is critical here and we will speak of the strict stand alone 

cost throughout the paper and write  (   ) by abuse of notation. 

Definition 1: Given (   ), an allocation   is core stable if ∑        (   ) for all    , and 

a solution   is a core selection (CS) if it always assigns a core stable allocation. 

Bird (1976) introduced the first core selection in this context. Assume first that there is a 

unique mcst  . To each agent  , the Bird solution (B) assigns the cost of the edge adjacent to   on 

the unique path form   to   in  . If there are multiple mcst’s, cost share of   can be calculated by 

taking the average of the cost shares calculated for each mcst. 

Cost Monotonicity (CM). For all (   ), (    ) and    ,     { }: 

{                                 }    (   )    (    ) 

Despite the ease of its calculation, Dutta and Kar (2004) criticized the Bird solution as it is 

not cost monotonic (CM). Beside its fairness aspect, CM is also considered as an incentive 

compatibility property. In case it does not hold, agent   would find it profitable to announce the 

cost of his link more than its actual value if it is private information. If the information is public, 

violation of CM would kill incentives to decrease the connection costs. 

The Dutta Kar solution (DK) is calculated through Prim’s algorithm. Assume first that there 

is a unique mcst  . Let   ̅ be the cost of the most expensive edge constructed in the first   steps 

of the algorithm. Suppose agent   is connected to the source at step  , and the edge     is 

constructed at step    . Then, DK assigns the minimum of     and   ̅ to agent  . If there are 

multiple mcst’s, cost share of   can be calculated by taking the average of the cost shares 

calculated for each mcst. 

Both solutions are easy to calculate with a unique mcst, even for problems with multiple 

mcst’s they satisfy the following axiom.
5
 

Polynomial Complexity (PC). For all (   ),  (   ) is computed by an algorithm polynomial 

in   | |. 

Naturally, we expect an agent   to pay less than   if   is more efficient in connecting to any 

other agent or to the source compared to  . 
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Ranking (RKG). For all (   );      : {                     { }  {   }}          

Note that RKG implies equal treatment of equals (ETE) that the cost shares of two agents  ,   

should be the same whenever         for all     { }  {   }. Both B, and DK obviously 

satisfy ETE. However, B fails RKG while DK meets RKG
6
. Hence, we can interpret DK as a 

refinement
7
 of B not only in terms of CM but also in terms of RKG. 

An important critique to these solutions is that in many instances, for a miniscule change in 

the cost of one link only, there is a substantial change in the cost share of an agent. Also, an 

agent would be worse off with the arrival of an additional agent. Hence, both solutions fail 

continuity and population monotonicity. Moreover, they fail separability (weaker than PM): If 

two sets of agents merge to connect the source jointly and there is no cost saving from the 

merger, cost shares remain the same for all agents (see e.g. Bergantiños and Vidal-Puga (2007)).  

Continuity (CO). For all (   ),  (   ) is a continuous function of  . 

Population Monotonicity (PM). For all (   ),     and    ,   (   )    (   ). 

Separability (SEP). For all (   ),    : { (   )   (   )   (     )}     (   )  

  (   ) for all    . 

The folk solution satisfies all the properties discussed above (see e.g. Bogomolnaia and 

Moulin (2010)). Among several different descriptions, Bergantiños and Vidal-Puga (2007) uses 

the irreducible cost matrix that is the smallest cost matrix    below   such that  (   )  

 (    ). Then, the folk solution is  (    ). 

Bogomolnaia and Moulin (2010) criticized the folk solution for it ignores a substantial 

amount of data in the cost vector and call it reductionist. 

Reductionism (RED). For all (   ),  (   )   (    ).  

  They argue that the folk solution (and any reductionist solution) fails to rank the cost shares 

strictly when such ranking is compelling in certain cases. They define strict versions of RKG on 

the domain of cost vectors   {                          (                        )}, 

where connecting any two agent is cheaper than connecting an agent to the source.
8
 

                                                           
6
 Consider the problem (          )  (     ).  (   )  (   ) violates ranking. For DK the idea is 

roughly as follows: Pick  ,  s.t.          for all     { }  {   }. Let   ,    denote the steps of Prim’s 

algorithm at which   and   connect to the source. Let   denote the set of all mcst’s,      be the trees 

where  ’s cost share calculated by DK method is no more than  ’s, and         . It is easy to check 

that      only if      . Then, if there is a unique mcst, DK meets ranking. Suppose there are several 

and     . Then, we can construct a one to one mapping   from    to    where for each     , 

  ( ( ))    ( ) and   ( ( ))    ( ), while the others not necessarily connect at the same step s.t. 

 ’s cost share at  ( ) is no more than  ’s share at   and  ’s share at  ( ) is no less than  ’s cost share at  . 

We leave the detailed argument to the curious reader. 
7
 Note that when there is a unique mcst, both solution yields allocation vectors consisting of same   

numbers while they differ in the allocation of these shares to the agents (see the example in Figure 1).   
8
 Note that on this domain  (   ) is equal to the minimum cost of connecting   agents to each other plus 

         . See Bogomolnaia and Moulin (2010) for a detailed justification of these properties on this 

domain. 
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Strict Ranking1 (SRK1). For any (   ) s.t.    , and for all      : 

{                    {   }            }         

Strict Ranking2 (SRK2). For any (   ) s.t.    , and for all      : 

{                    {   }            }         

Strict Cost Monotonicity (SCM). For any (   ) s.t.    , and for all    ,   (   ) is strictly 

increasing in each coordinate    ,     { }  { }. 

4 Absence-proofness: a strong stability property 

Stand alone core stability ensures that no coalition finds it profitable to secede from the 

cooperation and connect the source on their own. Here, we define an alternative but a related way 

for a coalition to improve upon their allocation  (   ), and the associated stability concept. 

Instead of fully seceding, a coalition       can partially secede and be better off. In 

particular,   does not appear at the scene and connects to the source using only the links in 

  { }.   cooperates with agents in     to connect to the source using the links in (   )  

{ }. If the total cost share of   at  (   ) is strictly more than  ’s own connection cost plus the 

total cost share of   at  (     ),   would profit from a partial secession. 

Definition 2: A solution   is absence-proof (AP)
9
, if for all (   ),    ,      : 

 ∑        (   )  ∑      (     )   (   )  (2) 

Remark 1: Note that any AP solution is a core selection; just set    . 

Generally, stability properties are interpreted as arguments preventing the cooperation from 

braking up. We now consider the situation from an opposite angle. Suppose two sets of agents   

and    are connecting to the source separately and the links are reconstructed periodically. For 

example, agents in   live in suburbs a little south of the northwest and    live in suburbs a little 

east of the northwest of a big city. The groups   and    separately carpool to commute to 

downtown directly.   and    discovered an alternative option; meet at a point exactly on the 

northwest and then commute using a single shuttle bus. Suppose this merger yields an overall 

cost saving, i.e.,  (    )   (   )   (    )   (   )   . Then, AP requires that no coalition 

from one of these groups has a cost saving more than the total cost saving from the merger. 

Moreover, that is all AP asks for. 

Proposition 1: (Doğan 2013) A solution   is absence-proof if and only if for any (   ); for all 

       such that       ,         and for all     we have, 

 ∑ (  (   )    (   ))     (    )   (3) 

Suppose an efficient   is not a core selection, i.e., ∑   (   )     (   ) for some  . Then, 

agents in   unanimously raise a credible objection to the merger between   and     as some 

                                                           
9
 We use AP as an abbreviation to both absence-proof and absence-proofness, whichever it fits.  
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reallocation of   (   )   (   ) to agents in   would make all strictly better off compared to 

their allocation after the merger. Now, let   be a core selection but fails (3) for some  ,     

and       . Then, agents in     unanimously objects to the merger between   and    , 

and their objection is credible as now a reallocation of their total cost share before the merger 

among     would make all strictly better off. If (3) holds, there is no credible objection as 

neither     nor     unanimously objects. 

Following directly from the idea in (3), our first critique is against the solutions that fail SEP, 

particularly against the Bird and the Dutta Kar solution. 

Proposition 2: Any solution that fails SEP also fails AP. 

Proof: Fix a core selection  ; (   ),    ,     s.t.  (   )   (   )   (     ) and 

  (   )    (   ). As   is CS, ∑   (   )   (   )    for   {     }. Then, there is     

s.t.   (   )    (   )     (     ).       

Corollary 1: The Bird and the Dutta Kar solutions fail AP. 

Note that for any core selection, when agents   leave the scene and connect on their own, 

their total will not decrease. So, for       to improve upon their allocation proposed by a 

core selection at problem (   ), the cost share of   should decrease in the restricted problem. 

This fact is summarized in the following proposition. 

Proposition 3: Any solution that meets PM also meets AP. 

Proof: Let   satisfy PM. For any    , we have ∑      (   )  ∑      (   )   (   ). PM 

also implies ∑      (   )  ∑      (     ). Summing up those two, (2) holds.       

Corollary 2: The folk solution is AP. 

Population monotonicity has been interpreted as a normative solidarity concept. As an 

additional agent always brings nonnegative cost savings, no one should be worse off. By 

Proposition 3, we can interpret population monotonicity as a strong stability property as well. 

However, violation of PM does not necessarily mean an opportunity for manipulation. Suppose 

two groups  ,    decides to connect to the source jointly. Everyone except     has two units of 

cost saving while   loses 1 unit and  ’s cost share after the merger is less than    . Then,   cannot 

convince anyone to object to the merger and he cannot raise a credible objection himself. 

In this context, several authors defined families of population monotonic solutions that 

contain the folk solution. Obligation rules (Tijs et al. 2006) and optimistic weighted Shapley 

solutions (Bergantiños, Lorenzo-Freire 2008), which is a subset of the obligation rules, are 

among those. Recently, Bergantiños and Vidal-Puga (2012) introduced a family that contains the 

obligation rules. This family consists of all population monotonic solutions that satisfy strong 

cost monotonicity
10

 (also known as solidarity). All these solutions are reductionist as solidarity 

implies RED
11

.  

                                                           
10

 For all (   ), (    ): {                         }     (   )    (    ) for all    . 
11

 See e.g. Bogomolnaia and Moulin  (2010). 
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Bogomolnaia and Moulin (2010) pioneered the search for non-reductionist solutions seeking 

the properties SRK1, SRK2, and SCM. Taking CS, CO, RKG and CM as basic fairness standard, 

they propose families of solutions that satisfy some combinations of SRK1, 2, SCM and PM. 

However, none of them satisfy all these properties simultaneously, and they left this issue as an 

open question. Norde (2013) defined the cost adjusted folk solution which discriminates the cost 

shares of agents very slightly while a significant discrimination is compelling in some cases. In 

the next section, we define solutions more responsive to the asymmetries in the cost data 

compared to CAF at the cost of the solidarity aspect of PM. 

5 Achieving SRK1, SRK2, SCM and AP 

Here, we follow Bogomolnaia and Moulin (2010) and first define elementary cost vectors  ̂. 

Every cost vector   can be written by integrating out these elementary cost vectors in a certain 

way (see (4)). Then, we define partial solutions that assign allocations to each problem with 

elementary cost vectors, given (   ) (see (5)). Finally, we introduce solutions that can be written 

as an extension of these partial solutions (see (6)). For a more detailed argument on (4), (5), and 

(6) defined below; and how core stability, polynomial complexity and cost monotonicity extend 

from partial solutions to their extensions, we refer to Bogomolnaia and Moulin (2010). 

A cost vector  ̂     is elementary if  ̂   {   } for all       { }, where    represents 

the set of all elementary cost vectors. For  ̂    ,  ( ̂) represents the graph of free edges among 

the elements in   { }:  ( ̂)  {     ̂    }. We say   and   are connected if there is a path 

between   and   consisting of only free edges.  ( ̂) denotes the set of connected components in 

 ( ̂) and a particular element is  . Also,   ( ̂) is the connected component   belongs to. 

Given any problem (   ), and      we define       such that   
     if       and 

  
     if      . Also, let  ̅ represent the cost of the most expensive edge in   { }, while   ̅ 

represent the cost of the most expensive edge in   { }, i.e.   ̅       (  { })( )   . Then, the 

cost vector    can be written as follows: 

    ∫   
   

  ̅

 

 (4) 

Let   (     ) be a partial solution that assigns a cost allocation to problem (   ̂) for all  ̂  

  , and for all (   ): 

   (   ̂  )    
    and   ∑   

 (   ̂  )      (   ̂) (5) 

For any partial solution    as defined in (5), we can write the extension of this solution to 

the problem (   ) as follows: 

  (   )  ∫   (      )  
  ̅

 

 (6) 

Remark 2: Note that for any    ,̅ as ∑   
 (   ̂  )      (   ̂) for all  ̂    , we have  
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 (   )  ∫   (      )  
  ̅

 

 ∫   (      )  
  

 

 

 (   ) defined by (5) and (6) is a legitimate solution to problem (   ):  (   )    
  and 

∫  (    )  
 ̅

 
  (   ). It is continuous if   (   ̂  ) is continuous in   for all  ̂    , and is 

of polynomial complexity if   (   ̂  ) is for all  ̂. Moreover,   is a core selection if (but not 

only if) for all  ̂    ,    ,    ( ̂),     : 

 ∑   
 (   ̂  )         if    ;         

 (   ̂  )      if     (7) 

Cost monotonicity also extend from    to   in the following way: 

Cost Monotonicity.   satisfies CM if for all  ̂  ̂     ,       ,    ,     { }   : 

{       
           

               }        
 (   ̂  )    

 (   ̂   ) and 

{ ̂    ̂  
       ̂   ̂ 

               }        
 (   ̂  )    

 (   ̂   ) 

Now, fix two continuous, strictly positive and weakly increasing functions            

and consider the following partial solutions  ̅  s.t. for any (   ),  ̂    ,    ( ̂) and    : 

  ̅ 
 (   ̂  )  

 (   )  ∏  (   )     

∑  (   )  ∏  (   )        

                
 (   ̂  )             (8) 

Proposition 4: (Moulin and Bogomolnaia (2010)) If   and   are strictly increasing, all solutions 

 ̅ defined (6) and (8) are core selections meeting CO, CM, RKG, SRK1, SRK2, and SCM but fail 

PM. 

Bogomolnaia and Moulin showed if   is strictly increasing and   is constant,  ̅ satisfies all 

but SRK1 and SCM. Consider the following 3-person problem: (                       )  

(             ). Note that any solution   meeting SEP and RKG (and hence ETE) yields 

 (   )  (     ). 

Remark 3: If   is strictly increasing, all solutions  ̅ defined (6) and (8) fail SEP (and hence AP). 

Now we define a property on the partial solutions    that ensures the extension of the partial 

solution is absence-proof. Let for any  ̂, for any    ( ̂),  ̂  ( ̂  )   (  { })( ). 

Definition 3: A partial solution satisfies independence of irrelevant components (IIC) if for all 

(   ), (     );  ̂   ̂    ;    ( ̂),     ( ̂ ) such that     ,      
 , and  ̂   ̂ 

 : 

   
 (   ̂  )    

 (    ̂    ) for all     { }. (9) 

Lemma 1: Let   be the extension of a partial solution    as defined in (6). If    satisfies IIC,   

is a core selection. 

Proof: Let    satisfy IIC. Fix (   ),  ̂    , and    ( ̂). For     { }, we have 

∑   
 (   ̂  )    ∑   

 (   ̂   )     (   ̂ ). Note that  (   ̂ )    if    , and  (   ̂ )  

  if    . Therefore, (7) holds.       
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The idea in IIC is as follows: By Lemma 1, for any  ̂     and the connected component 

 ( ̂),    distributes a total of 1 if     and 0 if     to the agents in  . Given a problem 

(   ), any partial solution    that distributes this cost among agents in   only as a function of 

the cost of links in   { } (    ̂ ) satisfy IIC. 

Proposition 4: Let   be the extension of a partial solution   . If    satisfies IIC,   is AP. 

Proof: Let everything be as in the statement of the proposition. Fix (   ),     and let 

   {        (   )    (     )}. Note that if for some      ,     is able to 

manipulate   by the absence of  , then      can manipulate, too. Reordering (2), and by 

Remark 2, as  ̅    ̅    ̅  , it suffices to show: 

∑∫ [  
 (    

   )    
 (      )]

 ̅

    

   ∑ ∫ [  
 (      )    

 (        
   )]

 ̅

     

   

Define    ( )  {        
 (      )    

 (        
   )}. Note that; 

∑ ∫ [  
 (      )    

 (        
   )]

 ̅

     ( )

    

∑ ∫ [  
 (      )    

 (        
   )]

 ̅

     

   

Now, combining the two inequalities above, it suffices to show that for any    ̅, (10) holds. 

 ∑  
 (    

   )

   

 ∑   
 (        

   )

    ( )

 ∑   
 (      )

      ( )

 (10) 

Let  ( )   (  ), and   ( )  {   ( )      }. Note that by construction of the 

graph  ( ), for any   and    ( )    ( ) we have    (    
 ). Then, by IIC of   , for 

any  ,    ( )    ( ) and for all     { } we have   
 (      )    

 (        
   ), 

and hence,     ( )   . Then, we can rewrite the inequality (10) as follows: 

∑   
 (    

   )

  ⋃ (   )
    ( )

 ∑   
 (        

   )

  ⋃ (  ( )  )    ( )

  

∑   
 (      )

  ⋃ [(  ( )  )  ]
    ( )

 

Note that if for each     ( ), the inequality above holds, then taking the union of   in   ( ) 

we have the desired result. Now, fix any     ( ). 

Case 1:    . Agents in     constitute at least 1 connected component in  (  
 ). Then, by 

Lemma 1, we have: 

∑   
 (    

   )

  (   )

   ∑   
 (      )

  [(  ( )  )  ]
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Case 2:    . Then, again by Lemma 1, we have: 

∑   
 (      )

  [(  ( )  )  ]

   

  

We are inspired by Bogomolnaia and Moulin (2010) for the solutions defined below by (11). 

Let          be a continuous, strictly positive
12

 and weakly increasing function. Fix a 

number  ,      . For all  ̂    , and     define   ( ̂)  |{      ( ̂)  ̂    }| that is 

the number of non-null links   has in   , and for all    ( ̂),   ( ̂)               ( ̂) that 

is the set of agents in   that has highest number of non-null links. Now, define   
   successively 

for       and     as follows: 

  
  (   ̂  )  

 (   )   
  ( ̂)

∑  (   )   
  ( ̂)    ( ̂)

         ( ̂)                       
  ( )                 

  
  (   ̂  )  

 (   )

∑  (   )    
 ( ̂)

         
 ( ̂)          ( ̂)      

  ( )                  

(11) 

Remark 4: If   is constant,    is the folk solution.
13

 

Proposition 5: 

(1) All solutions    defined by (6), (11) are core selections meeting CO, RKG, CM, PC and AP. 

(2) If    , they satisfy SRK1 but fail PM. 

(3) If   is strictly increasing, they all satisfy SRK2, and they satisfy SCM for      . 

Proof: (1) Note that (7) and IIC holds for   
   for all   by construction. Also,   

   is continuous 

in   for all  ̂ and it clearly meets PC.  Hence, all    are core selections meeting CO, PC and AP. 

For RKG, fix  ;       such that         for all     { }  {   }. If |  ( 
 )|   ,   

  ( 
 ), and   ( 

 )    ( 
 ) for all such  . Also, if |  ( 

 )|   ,   
  (  )    

  (  )    Then, 

  receives no less than   at each   in   
  (  ) as   is weakly increasing and    . 

For CM, we give the proof for only    . For    , the argument is the same, or simpler. 

In case we fix  ̂, we only need to check the case     is increased to    
  as   ( ̂) is fixed for all 

   . Since   is weakly increasing, we are done. Now, suppose the cost of only one link  ̂  is 

increased from 0 to  ̂ 
    while the rest of  ̂,   is fixed. Then, if for one vertex   in  ,  ̂    , 

  
   cannot decrease as   

  (   ̂  )   . Suppose now  ̂    ̂    ,  ̂   is increased from 0 to 

 ̂  
   . Consider first the case     ( ̂

 ). Let   ( ̂)   (   )   
  ( ̂). Note that   ( ̂

 )  

   ( ̂) for   {   } and   ( ̂
 )    ( ̂) otherwise. Check that for any nonnegative   numbers 

          and    , 

                                                           
12

 { ( )    and   is strictly positive otherwise} is fine and does not alter our results. 
13

 The folk solution is the extension of the following partial solution:   
 (   ̂  )  

 

| |
        and 

  
 (   ̂  )           . See Bogomolnaia and Moulin (2010). 
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 [  ∑   
 
   ⁄ ]  [   (        ∑   

 
   )⁄ ]  (12) 

Now, consider the case     ( ̂
 )   . Then,   ( ̂

 )     and   partitions   ( ̂) with 

| |    and |  |    . Note that   ( ̂
 )    ( ̂)  (    )⁄  and   ( ̂

 )    ( ̂)    
⁄  for all 

     . Similarly,   ( ̂
 )    ( ̂)     ⁄  and   ( ̂

 )    ( ̂)   ⁄  for all       . Then,  

  
  (   ̂   )     ( ̂) [   ( ̂)  (∑   ( ̂)     )]⁄    ( ̂) [∑   ( ̂)   ]⁄    

  (   ̂  )  (13) 

 (2) For SRK1, let    ;       such that         for all     {   } and        . We 

already showed   
  (  )    

  (  ) at each  . Consider             { }      and recall that 

for all   (       ],     ( 
 ). Then, if   (       ], in case     ( 

 ), we have   ( 
 )  

  ( 
 ) implying   

  (  )    
  (  ) as   is weakly increasing. In case     ( 

 ), we have 

  
  (  )    

  (  )    for    . For      if     
 (  ), all     {   } are also in 

  
 (  ) as   ( 

 )   .Then, again we have   
  (  )    

  (  )   . Therefore, we have the 

desired result by definition (6). 

To see PM fails, let (     ),     be such that           for all      .         

      for all          . In the absence of   each agent 1 pays   ⁄ . When   is present, agent 

1 pays 
 

      
. Therefore, PM requires 

 

      
 

 

 
   

   

   
 . 

(3) For SRK2, let    ;       such that         for all     {   } and        . Recall 

that   
  (  )    

  (  ) at each  . Note that  ̅                            as    . 

Then, for any   ( ̅   ] we have   ( 
 )    for all    ,   

  (  )  
 (   )

∑  (   )   
 , and hence, 

  
  (  )    

  (  ) if   is strictly increasing. Thus, we have the desired result by definition (6). 

For SCM, let   be strictly increasing,    . Suppose first     increase to  ̃   and the rest of   

is fixed. Let  ̅   be as defined just above. Note that     ̃  for all    . Then, as   is strictly 

increasing,   
  (  )    

  ( ̃ ) for all    ̅ and for all  . Also, for any   ( ̅   ] we have 

  ( 
 )    for all    , and hence,   

  (  )  
 (   )

∑  (   )   
 

 ( ̃   )

∑  ( ̃   )   
   

  ( ̃ ). Then, we 

have   
 (  )    

 ( ̃ ) by (6). Now, let only     increase to  ̃     so that  ̃   , and the rest of 

  is fixed. Note that     ̃  for all    ̅ and    ̃  . For all those   as   ( 
 ) and     remains 

the same for all    ,   
  (  )    

  ( ̃ ). For   ( ̅   ] we have two cases:     ( ̃
 ) and 

    ( ̃
 ). Then, the proof mimics that of CM and inequalities (12) and (13) hold strictly for 

      as  (   )    for all    .       
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